A package of LAMMPS software enabling simulations using polynomial machine learning potentials
(lammps-polymlp-package is tested using LAMMPS_VERSION "lammps-23Jun2022”)
-
Copy all the components in the lammps-polymlp-package to the latest lammps source code directory as
> cp -r lammps-polymlp-package/lib/polymlp $(lammps_src)/lib > cp -r lammps-polymlp-package/src/POLYMLP $(lammps_src)/src
-
Add "polymlp" to variable PACKAGE defined in $(lammps_src)/src/Makefile and activate polymlp package as
> cat $(lammps_src)/src/Makefile PACKAGE = \ adios \ amoeba \ ... poems \ polymlp \ ptm \ ... ml-iap \ phonon ... > ulimit -s unlimited > cd $(lammps_src)/src > make yes-polymlp
-
If necessary, modify compile options and flags in
$(lammps_src)/src/MAKE/Makefile.serial
and$(lammps_src)/lib/polymlp/Makefile.lammps
-
Change directory to
$(lammps_src)/src
and build lammps binary files. (It requires approximately ten minutes to one hour for compilingpolymlp_gtinv_data.cpp
.)> make serial -j 36
Note that MPI is not currently available for the lammps-polymlp package, but OpenMP is supported. Even when using the OpenMP-supported lammps-polymlp package, you should compile LAMMPS using the command make serial
. Parallel calculations can be performed using OpenMP with lmp_serial
.
Machine learning potentials for a wide range of systems can be found in the website. If you use lammps-polymlp package and machine learning potentials in the repository for academic purposes, please cite the following article [1].
[1] A. Seko, "Systematic development of polynomial machine learning potentials for elemental and alloy systems", J. Appl. Phys. 133, 011101 (2023).
The following lammps input commands specify a machine learning potential.
pair_style polymlp
pair_coeff * * polymlp.lammps Ti Al
If you are using a polynomial machine learning potential generated by pypolymlp (version >= 0.9.0), the potential can be specified as follows:
pair_style polymlp
pair_coeff * * polymlp.yaml Ti Al