Skip to content

feat: add mb-PHENIX as a scikit estimator #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 108 additions & 0 deletions CODE/mb-phenix code/mb_phenix_scaler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
import pandas as pd
import numpy as np
from typing import List
from sklearn.base import BaseEstimator, TransformerMixin

import umap
from scipy.spatial.distance import pdist
from scipy.spatial.distance import squareform

class MBPhenixScaler(BaseEstimator, TransformerMixin):
def __init__(self, ignored_features: List[str] = [], target_weight = 0.9):
self.columns = None
self.ignored_features = ignored_features
self.scaler = umap.UMAP(n_components=10, verbose=False,metric='cosine',n_epochs=1000,min_dist=0.1,n_neighbors=200,
random_state=123, target_weight=target_weight)
self.new_matrix = None

def fit(self, X, y=None):
"""
Fits the scaler to the data.

Parameters:
X (pandas.DataFrame): The input data to fit the scaler on.
y (pandas.Series or None): The target variable. Default is None. Strongly recommend supervised learning.

Returns:
self (Scaler): The fitted scaler object.
"""
relevant_columns = X.loc[:, ~X.columns.isin(self.ignored_features)]
self.columns = [c for c in relevant_columns.columns]
self._fit_not_ignored(relevant_columns, y)

return self

def _fit_not_ignored(self, X, y=None, t=3, decay=1, metric='euclidean', knn=10):
umap_data = self.scaler.fit_transform(X.values, y)

distance_matrix =pdist(umap_data, metric)
distance_matrix = (squareform(distance_matrix))
D = distance_matrix
n,m = D.shape
E = np.zeros((m,m))

knn_dst = np.sort(distance_matrix, axis=1)

epsilon = knn_dst[:,knn]
pdx_scale = (distance_matrix / epsilon).T

E = np.exp(-1 * ( pdx_scale ** decay))
A = (E + E.T)

diff_deg = np.diag(np.sum(A,0))
diff_op = np.dot(np.diag(np.diag(diff_deg)**(-1)),A)

self.new_matrix = np.linalg.matrix_power(diff_op, t)

def transform(self, X) -> pd.DataFrame:
"""Transforms the features.

Arguments:
X (pd.DataFrame): The data to be transformed.

Returns:
pd.DataFrame: The transformed data.
"""
missing_columns = [c for c in self.columns if c not in list(X.columns)]

if len(missing_columns) / len(self.columns) > 0.2:
print(f'More than 20 percent of columns not found in {self.__class__}. {len(X.columns)} available columns: {list(X.columns)}.')

X = X.copy()

for m in missing_columns:
X[m] = 0.0

relevant_columns = X.loc[:, ~X.columns.isin(self.ignored_features)].copy()
relevant_columns = relevant_columns[self.columns]

return self._transform_not_ignored(relevant_columns).join(X.loc[:, X.columns.isin(self.ignored_features)])

def _transform_not_ignored(self, X) -> pd.DataFrame:
"""Uses mb-PHENIX to transfrom features. (DOI: 10.1093/bioinformatics/btad706)

Arguments:
X (pd.DataFrame): The data to be transformed.

Returns:
pd.DataFrame: The transformed data.
"""

data_new = np.array(np.dot(self.new_matrix, X))

Matix_col_genes_row_cell2 = (X +1) - X
Matix_col_genes_row_cell2 = Matix_col_genes_row_cell2 - Matix_col_genes_row_cell2
Matix_impu = Matix_col_genes_row_cell2 + data_new

sc_PHENIX = Matix_impu

return (sc_PHENIX)


def get_support(self) -> List[str]:
"""Returns a list of selected features

Returns:
List[str]: list of selected features
"""
return self.columns