-
Notifications
You must be signed in to change notification settings - Fork 0
The Functions in QMGsurvey III
Initialization function of cqmgTSleafDistribution; cqmgTSleafDistribution calculates the target space based distribution for a given point.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgTSleafDistribution.
Output | Type | Description |
---|---|---|
cqmgTSleafDistribution | Fx | the compiled function |
Initialized with cqmgTSleafDistributionINIT; cqmgTSleafDistribution calculates the target space based distribution for a given point.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | a point in target space |
cqmgTSleafDistribution is parallelizable in the variable x.
Output
The output is dist.
Output | Type | Description |
---|---|---|
out | Real(l,Dim) | compressed output. With respect to the output of cqmgTSleafDistributionEXTR out=dist |
Extraction function of cqmgTSleafDistribution; cqmgTSleafDistribution calculates the target space based distribution for a given point.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(l,Dim) | the output of cqmgTSleafDistribution |
Output
The output is dist.
Output | Type | Description |
---|---|---|
dist | Real(l,Dim) | dist is a list containing vectors that span the distribution of the hybrid leaf (using theta) in target space |
Description
cqmgTSleafDistribution calculates the distribution of the hybrid leaf (using theta) in target space. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
cqmgTSleafDistribution=cqmgTSleafDistributionINIT[X,l];
out=cqmgTSleafDistribution[x];
cqmgTSleafDistributionEXTR[out]
Initialization function of cqmgQMleafDistribution; cqmgQMleafDistribution calculates the quantum manifold based distribution for a given point.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgQMleafDistribution.
Output | Type | Description |
---|---|---|
cqmgQMleafDistribution | Fx | the compiled function |
Initialized with cqmgQMleafDistributionINIT; cqmgQMleafDistribution calculates the quantum manifold based distribution for a given point.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | a point in target space |
cqmgQMleafDistribution is parallelizable in the variable x.
Output
The output is dist.
Output | Type | Description |
---|---|---|
out | Real(l,Dim) | compressed output. With respect to the output of cqmgQMleafDistributionEXTR out=dist |
Extraction function of cqmgQMleafDistribution; cqmgQMleafDistribution calculates the quantum manifold based distribution for a given point.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(l,Dim) | the output of cqmgQMleafDistribution |
Output
The output is dist.
Output | Type | Description |
---|---|---|
dist | Real(l,Dim) | dist is a list containing vectors that span the distribution of the hybrid leaf using omega in target space |
Description
cqmgQMleafDistribution calculates the distribution of the hybrid leaf using omega in target space. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
cqmgQMleafDistribution=cqmgQMleafDistributionINIT[X,l];
out=cqmgQMleafDistribution[x];
cqmgQMleafDistributionEXTR[out]
Initialization function of cqmgGQMleafDistribution; cqmgGQMleafDistribution calculates the quantum manifold and g based distribution for a given point.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgGQMleafDistribution.
Output | Type | Description |
---|---|---|
cqmgGQMleafDistribution | Fx | the compiled function |
Initialized with cqmgGQMleafDistributionINIT; cqmgGQMleafDistribution calculates the quantum manifold and g based distribution for a given point.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | a point in target space |
cqmgGQMleafDistribution is parallelizable in the variable x.
Output
The output is dist.
Output | Type | Description |
---|---|---|
out | Real(l,Dim) | compressed output. With respect to the output of cqmgGQMleafDistributionEXTR out=dist |
Extraction function of cqmgGQMleafDistribution; cqmgGQMleafDistribution calculates the quantum manifold and g based distribution for a given point.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(l,Dim) | the output of cqmgGQMleafDistribution |
Output
The output is dist.
Output | Type | Description |
---|---|---|
dist | Real(l,Dim) | dist is a list containing vectors that span the distribution of the hybrid leaf using omega and g in target space |
Description
cqmgQMleafDistribution calculates the distribution of the hybrid leaf using omega and g in target space. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
cqmgGQMleafDistribution=cqmgGQMleafDistributionINIT[X,l];
out=cqmgGQMleafDistribution[x];
cqmgGQMleafDistributionEXTR[out]
Unification of cqmgTSleafDistribution, cqmgQMleafDistribution and cqmgGQMleafDistribution; calculates the distribution for a given point.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
x | Real(Dim) | a point in target space |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
leaf="TSleaf" | Str | the chosen leaf, can be "TSleaf", "QMleaf" or "GQMleaf". "TSleaf" is the hybrid leaf (using theta), "QMleaf" is the hybrid leaf using omega and "GQMleaf" is the hybrid leaf using omega and g |
cqmgDistribution is parallelizable in the variable x.
Output
The output is dist.
Output | Type | Description |
---|---|---|
dist | Real(l,Dim) | dist is a list containing vectors that span the distribution of the chosen leaf in target space |
Description
cqmgDistribution is a unification of cqmgTSleafDistribution*, cqmgQMleafDistribution* and cqmgGQMleafDistribution*. cqmgDistribution calculates the distribution of the chosen leaf in target space. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
leaf="QMleaf";
cqmgDistribution[X,x,l,leaf]
Initialization function of cqmgTSleafCurveIteration; cqmgTSleafCurveIteration calculates a step in the target space based distribution.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgTSleafCurveIteration.
Output | Type | Description |
---|---|---|
cqmgTSleafCurveIteration | Fx | the compiled function |
Initialized with cqmgTSleafCurveIterationINIT; cqmgTSleafCurveIteration calculates a step in the target space based distribution.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite step length |
cqmgTSleafCurveIteration is parallelizable in the variables x, v and delta.
Output
The output is out.
Output | Type | Description |
---|---|---|
out | Real(2,Dim) | compressed output. With respect to the output of cqmgTSleafCurveIterationEXTR out={vPrime,xNew} |
Extraction function of cqmgTSleafCurveIteration; cqmgTSleafCurveIteration calculates a step in the target space based distribution.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(2,Dim) | the output of cqmgTSleafCurveIteration |
Output
The output is {vPrime,xNew}.
Output | Type | Description |
---|---|---|
vPrime | Real(Dim) | vPrime is the projection of the initial tangent vector v into the distribution, normalized to length delta |
xNew | Real(Dim) | xNew=x+vPrime is the new point after a finite step with vPrime |
Description
cqmgTSleafCurveIteration calculates a finite step in the hybrid leaf (using theta) in target space. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=0.01;
cqmgTSleafCurveIteration=cqmgTSleafCurveIterationINIT[X,l];
out=cqmgTSleafCurveIteration[x,v,delta];
cqmgTSleafCurveIterationEXTR[out]
Initialization function of cqmgQMleafCurveIteration; cqmgQMleafCurveIteration calculates a step in the quantum manifold based distribution.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgQMleafCurveIteration.
Output | Type | Description |
---|---|---|
cqmgQMleafCurveIteration | Fx | the compiled function |
Initialized with cqmgQMleafCurveIterationINIT; cqmgQMleafCurveIteration calculates a step in the quantum manifold based distribution.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite step length |
cqmgQMleafCurveIteration is parallelizable in the variables x, v and delta.
Output
The output is out.
Output | Type | Description |
---|---|---|
out | Real(2,Dim) | compressed output. With respect to the output of cqmgQMleafCurveIterationEXTR out={vPrime,xNew} |
Extraction function of cqmgQMleafCurveIteration; cqmgQMleafCurveIteration calculates a step in the quantum manifold based distribution.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(2,Dim) | the output of cqmgQMleafCurveIteration |
Output
The output is {vPrime,xNew}.
Output | Type | Description |
---|---|---|
vPrime | Real(Dim) | vPrime is the projection of the initial tangent vector v into the distribution, normalized to length delta |
xNew | Real(Dim) | xNew=x+vPrime is the new point after a finite step with vPrime |
Description
cqmgQMleafCurveIteration calculates a finite step in the hybrid leaf using omega in target space. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=0.01;
cqmgQMleafCurveIteration=cqmgQMleafCurveIterationINIT[X,l];
out=cqmgQMleafCurveIteration[x,v,delta];
cqmgQMleafCurveIterationEXTR[out]
Initialization function of cqmgGQMleafCurveIteration; cqmgGQMleafCurveIteration calculates a step in the quantum manifold and g based distribution.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgGQMleafCurveIteration.
Output | Type | Description |
---|---|---|
cqmgGQMleafCurveIteration | Fx | the compiled function |
Initialized with cqmgGQMleafCurveIterationINIT; cqmgGQMleafCurveIteration calculates a step in the quantum manifold and g based distribution.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite step length |
cqmgGQMleafCurveIteration is parallelizable in the variables x, v and delta.
Output
The output is out.
Output | Type | Description |
---|---|---|
out | Real(2,Dim) | compressed output. With respect to the output of cqmgGQMleafCurveIterationEXTR out={vPrime,xNew} |
Extraction function of cqmgGQMleafCurveIteration; cqmgGQMleafCurveIteration calculates a step in the quantum manifold and g based distribution.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(2,Dim) | the output of cqmgGQMleafCurveIteration |
Output
The output is {vPrime,xNew}.
Output | Type | Description |
---|---|---|
vPrime | Real(Dim) | vPrime is the projection of the initial tangent vector v into the distribution, normalized to length delta |
xNew | Real(Dim) | xNew=x+vPrime is the new point after a finite step with vPrime |
Description
cqmgGQMleafCurveIteration calculates a finite step in the hybrid leaf using omega and g in target space. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=0.01;
cqmgGQMleafCurveIteration=cqmgGQMleafCurveIterationINIT[X,l];
out=cqmgGQMleafCurveIteration[x,v,delta];
cqmgGQMleafCurveIterationEXTR[out]
Unified function; calculates a curve in the chosen distribution.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite step length |
n | Int | the (positive) number of steps (initial point excluded) |
m | Int | the (positive) number of intermediate steps (zero means no intermediate steps). These increase the numerical precision, they do not affect the length of the curve |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
leaf="TSleaf" | Str | the chosen leaf, can be "TSleaf", "QMleaf" or "GQMleaf". "TSleaf" is the hybrid leaf (using theta), "QMleaf" is the hybrid leaf using omega and "GQMleaf" is the hybrid leaf using omega and g |
vFix=False | Bool | True: use the initial v at each step; False: use vPrime from the last step as |
cqmgCurveIntegration is partially parallelizable in the variables x and v (this means lists of initial points and initial tangent vectors but no higher nesting can be handled).
Output
The output is xs.
Output | Type | Description |
---|---|---|
xs | Real(n+1,Dim) | xs is a list of all points of the discrete curve in the chosen leaf, xs(1) is the initial point x |
Description
cqmgCurveIntegration is an iterated unification of cqmgTSleafCurveIteration*, cqmgQMleafCurveIteration* and cqmgGQMleafCurveIteration*. cqmgDistribution calculates a discrete curve with initial point x, initial tangent vector v and step length delta in the chosen leaf. This is done by iterating cqmgTSleafCurveIteration*, cqmgQMleafCurveIteration* or cqmgGQMleafCurveIteration*. If vFix=False the iteration uses vPrime from the last step as the new v in every step; if vFix=False v is used allways. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=0.01;
n=1000;
m=3;
leaf="QMleaf";
cqmgCurveIntegration[X,x,v,delta,n,m,l,leaf]
An example for the fuzzy sphere with fixed initial tangent vector:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=0.01;
n=1000;
m=3;
leaf="QMleaf";
cqmgCurveIntegration[X,x,v,delta,n,m,l,leaf,True]
An example with parallelization:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v1={0,1,0};
v2={1,0,0};
vs={v1,v2};
delta=0.01;
n=1000;
m=3;
leaf="QMleaf";
cqmgCurveIntegration[X,x,vs,delta,n,m,l,leaf,True]
Initialization function of cqmgTSleafCurveIterationNull; cqmgTSleafCurveIterationNull calculates a step in the target space based distribution in orthogonal (null) direction.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgTSleafCurveIterationNull.
Output | Type | Description |
---|---|---|
cqmgTSleafCurveIterationNull | Fx | the compiled function |
Initialized with cqmgTSleafCurveIterationNullINIT; cqmgTSleafCurveIterationNull calculates a step in the target space based distribution in orthogonal (null) direction.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite step length |
cqmgTSleafCurveIterationNull is parallelizable in the variables x, v and delta.
Output
The output is out.
Output | Type | Description |
---|---|---|
out | Real(2,Dim) | compressed output. With respect to the output of cqmgTSleafCurveIterationNullEXTR out={vPrime,xNew} |
Extraction function of cqmgTSleafCurveIterationNull; cqmgTSleafCurveIterationNull calculates a step in the target space based distribution in orthogonal (null) direction.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(2,Dim) | the output of cqmgTSleafCurveIterationNull |
Output
The output is {vPrime,xNew}.
Output | Type | Description |
---|---|---|
vPrime | Real(Dim) | vPrime is the projection of the initial tangent vector v into the orthogonal distribution, normalized to length delta |
xNew | Real(Dim) | xNew=x+vPrime is the new point after a finite step with vPrime |
Description
cqmgTSleafCurveIterationNull calculates a finite step in the orthognal direction to the hybrid leaf (using theta) (thus the null leaf) in target space. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=0.01;
cqmgTSleafCurveIterationNull=cqmgTSleafCurveIterationNullINIT[X,l];
out=cqmgTSleafCurveIterationNull[x,v,delta];
cqmgTSleafCurveIterationNullEXTR[out]
Initialization function of cqmgQMleafCurveIterationNull; cqmgQMleafCurveIterationNull calculates a step in the quantum manifold based distribution in orthogonal (null) direction.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgQMleafCurveIterationNull.
Output | Type | Description |
---|---|---|
cqmgQMleafCurveIterationNull | Fx | the compiled function |
Initialized with cqmgQMleafCurveIterationNullINIT; cqmgQMleafCurveIterationNull calculates a step in the quantum manifold based distribution in orthogonal (null) direction.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite step length |
cqmgQMleafCurveIterationNull is parallelizable in the variables x, v and delta.
Output
The output is out.
Output | Type | Description |
---|---|---|
out | Real(2,Dim) | compressed output. With respect to the output of cqmgQMleafCurveIterationNullEXTR out={vPrime,xNew} |
Extraction function of cqmgQMleafCurveIterationNull; cqmgQMleafCurveIterationNull calculates a step in the quantum manifold based distribution in orthogonal (null) direction.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(2,Dim) | the output of cqmgQMleafCurveIterationNull |
Output
The output is {vPrime,xNew}.
Output | Type | Description |
---|---|---|
vPrime | Real(Dim) | vPrime is the projection of the initial tangent vector v into the orthogonal distribution, normalized to length delta |
xNew | Real(Dim) | xNew=x+vPrime is the new point after a finite step with vPrime |
Description
cqmgQMleafCurveIterationNull calculates a finite step in the orthognal direction to the hybrid leaf using omega (thus the null leaf) in target space. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=0.01;
cqmgQMleafCurveIterationNull=cqmgQMleafCurveIterationNullINIT[X,l];
out=cqmgQMleafCurveIterationNull[x,v,delta];
cqmgQMleafCurveIterationNullEXTR[out]
Initialization function of cqmgGQMleafCurveIterationNull; cqmgGQMleafCurveIterationNull calculates a step in the quantum manifold and g based distribution in orthogonal (null) direction.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgGQMleafCurveIterationNull.
Output | Type | Description |
---|---|---|
cqmgGQMleafCurveIterationNull | Fx | the compiled function |
Initialized with cqmgGQMleafCurveIterationNullINIT; cqmgGQMleafCurveIterationNull calculates a step in the quantum manifold and g based distribution in orthogonal (null) direction.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite step length |
cqmgGQMleafCurveIterationNull is parallelizable in the variables x, v and delta.
Output
The output is out.
Output | Type | Description |
---|---|---|
out | Real(2,Dim) | compressed output. With respect to the output of cqmgGQMleafCurveIterationNullEXTR out={vPrime,xNew} |
Extraction function of cqmgGQMleafCurveIterationNull; cqmgGQMleafCurveIterationNull calculates a step in the quantum manifold and g based distribution in orthogonal (null) direction.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(2,Dim) | the output of cqmgGQMleafCurveIterationNull |
Output
The output is {vPrime,xNew}.
Output | Type | Description |
---|---|---|
vPrime | Real(Dim) | vPrime is the projection of the initial tangent vector v into the orthogonal distribution, normalized to length delta |
xNew | Real(Dim) | xNew=x+vPrime is the new point after a finite step with vPrime |
Description
cqmgGQMleafCurveIterationNull calculates a finite step in the orthognal direction to the hybrid leaf using omega and g (thus the null leaf) in target space. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=0.01;
cqmgGQMleafCurveIterationNull=cqmgGQMleafCurveIterationNullINIT[X,l];
out=cqmgGQMleafCurveIterationNull[x,v,delta];
cqmgGQMleafCurveIterationNullEXTR[out]
Unified function; calculates a curve in the chosen distribution in orthogonal (null) direction.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite step length |
n | Int | the (positive) number of steps (initial point excluded) |
m | Int | the (positive) number of intermediate steps (zero means no intermediate steps). These increase the numerical precision, they do not affect the length of the curve |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
leaf="TSleaf" | Str | the chosen leaf, can be "TSleaf", "QMleaf" or "GQMleaf". "TSleaf" is the hybrid leaf (using theta), "QMleaf" is the hybrid leaf using omega and "GQMleaf" is the hybrid leaf using omega and g |
vFix=False | Bool | True: use the initial v at each step; False: use vPrime from the last step as |
cqmgCurveIntegrationNull is partially parallelizable in the variables x and v (this means lists of initial points and initial tangent vectors but no higher nesting can be handled).
Output
The output is xs.
Output | Type | Description |
---|---|---|
xs | Real(n+1,Dim) | xs is a list of all points of the discrete curve in the null leaf of the chosen leaf, xs(1) is the initial point x |
Description
cqmgCurveIntegrationNull is an iterated unification of cqmgTSleafCurveIterationNull*, cqmgQMleafCurveIterationNull* and cqmgGQMleafCurveIterationNull*. cqmgCurveIntegrationNull calculates a discrete curve with initial point x, initial tangent vector v and step length delta in the null leaf corresponding to the chosen leaf. This is done by iterating cqmgTSleafCurveIterationNull*, cqmgQMleafCurveIterationNull* or cqmgGQMleafCurveIterationNull*. If vFix=False the iteration uses vPrime from the last step as the new v in every step; if vFix=False v is used allways. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=0.01;
n=1000;
m=3;
leaf="QMleaf";
cqmgCurveIntegrationNull[X,x,v,delta,n,m,l,leaf]
An example for the fuzzy sphere with fixed initial tangent vector:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=0.01;
n=1000;
m=3;
leaf="QMleaf";
cqmgCurveIntegrationNull[X,x,v,delta,n,m,l,leaf,True]
An example with parallelization:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v1={0,1,0};
v2={1,0,0};
vs={v1,v2};
delta=0.01;
n=1000;
m=3;
leaf="QMleaf";
cqmgCurveIntegrationNull[X,x,vs,delta,n,m,l,leaf,True]
Initialization function of cqmgTSleafCurveIterationAdaptiveNull; cqmgTSleafCurveIterationAdaptiveNull calculates a step in the target space based distribution in orthogonal (null) direction and with variable length.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgTSleafCurveIterationAdaptiveNull.
Output | Type | Description |
---|---|---|
cqmgTSleafCurveIterationAdaptiveNull | Fx | the compiled function |
Initialized with cqmgTSleafCurveIterationAdaptiveNullINIT; cqmgTSleafCurveIterationAdaptiveNull calculates a step in the target space based distribution in orthogonal (null) direction and with variable length.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite relative step length |
cqmgTSleafCurveIterationAdaptiveNull is parallelizable in the variables x, v and delta.
Output
The output is out.
Output | Type | Description |
---|---|---|
out | Real(2,Dim) | compressed output. With respect to the output of cqmgTSleafCurveIterationAdaptiveNullEXTR out={vPrime,xNew} |
Extraction function of cqmgTSleafCurveIterationAdaptiveNull; cqmgTSleafCurveIterationAdaptiveNull calculates a step in the target space based distribution in orthogonal (null) direction and with variable length.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(2,Dim) | the output of cqmgTSleafCurveIterationAdaptiveNull |
Output
The output is {vPrime,xNew}.
Output | Type | Description |
---|---|---|
vPrime | Real(Dim) | vPrime is the projection of the initial tangent vector v into the orthogonal distribution, multiplied with delta |
xNew | Real(Dim) | xNew=x+vPrime is the new point after a finite step with vPrime |
Description
cqmgTSleafCurveIterationAdaptiveNull calculates a finite step in the orthognal direction to the hybrid leaf (using theta) (thus the null leaf) in target space. Here, vPrime is not normalized to delta but is the projection of v multiplied with delta. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=1;
cqmgTSleafCurveIterationAdaptiveNull=cqmgTSleafCurveIterationAdaptiveNullINIT[X,l];
out=cqmgTSleafCurveIterationAdaptiveNull[x,v,delta];
cqmgTSleafCurveIterationAdaptiveNullEXTR[out]
Initialization function of cqmgQMleafCurveIterationAdaptiveNull; cqmgQMleafCurveIterationAdaptiveNull calculates a step in the quantum manifold based distribution in orthogonal (null) direction and with variable length.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgQMleafCurveIterationAdaptiveNull.
Output | Type | Description |
---|---|---|
cqmgQMleafCurveIterationAdaptiveNull | Fx | the compiled function |
Initialized with cqmgQMleafCurveIterationAdaptiveNullINIT; cqmgQMleafCurveIterationAdaptiveNullcalculates a step in the quantum manifold based distribution in orthogonal (null) direction and with variable length.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite relative step length |
cqmgQMleafCurveIterationAdaptiveNull is parallelizable in the variables x, v and delta.
Output
The output is out.
Output | Type | Description |
---|---|---|
out | Real(2,Dim) | compressed output. With respect to the output of cqmgQMleafCurveIterationAdaptiveNullEXTR out={vPrime,xNew} |
Extraction function of cqmgQMleafCurveIterationAdaptiveNull; cqmgQMleafCurveIterationAdaptiveNull calculates a step in the quantum manifold based distribution in orthogonal (null) direction and with variable length.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(2,Dim) | the output of cqmgQMleafCurveIterationAdaptiveNull |
Output
The output is {vPrime,xNew}.
Output | Type | Description |
---|---|---|
vPrime | Real(Dim) | vPrime is the projection of the initial tangent vector v into the orthogonal distribution, multiplied with delta |
xNew | Real(Dim) | xNew=x+vPrime is the new point after a finite step with vPrime |
Description
cqmgQMleafCurveIterationAdaptiveNull calculates a finite step in the orthognal direction to the hybrid leaf using omega (thus the null leaf) in target space. Here, vPrime is not normalized to delta but is the projection of v multiplied with delta. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=1;
cqmgQMleafCurveIterationAdaptiveNull=cqmgQMleafCurveIterationAdaptiveNullINIT[X,l];
out=cqmgQMleafCurveIterationAdaptiveNull[x,v,delta];
cqmgQMleafCurveIterationAdaptiveNullEXTR[out]
Initialization function of cqmgGQMleafCurveIterationAdaptiveNull; cqmgGQMleafCurveIterationAdaptiveNull calculates a step in the quantum manifold and g based distribution in orthogonal (null) direction and with variable length.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
Output
The output is cqmgGQMleafCurveIterationAdaptiveNull.
Output | Type | Description |
---|---|---|
cqmgGQMleafCurveIterationAdaptiveNull | Fx | the compiled function |
Initialized with cqmgGQMleafCurveIterationAdaptiveNullINIT; cqmgGQMleafCurveIterationAdaptiveNull calculates a step in the quantum manifold and g based distribution in orthogonal (null) direction and with variable length.
Arguments
Argument | Type | Description |
---|---|---|
x | Real(Dim) | an initial point in target space |
v | Real(Dim) | an initial tangent vector in target space |
delta | Real | a positive finite relative step length |
cqmgGQMleafCurveIterationAdaptiveNull is parallelizable in the variables x, v and delta.
Output
The output is out.
Output | Type | Description |
---|---|---|
out | Real(2,Dim) | compressed output. With respect to the output of cqmgGQMleafCurveIterationAdaptiveNullEXTR out={vPrime,xNew} |
Extraction function of cqmgGQMleafCurveIterationAdaptiveNull; cqmgGQMleafCurveIterationAdaptiveNull calculates a step in the quantum manifold and g based distribution in orthogonal (null) direction and with variable length.
Arguments
Argument | Type | Description |
---|---|---|
out | Real(2,Dim) | the output of cqmgGQMleafCurveIterationAdaptiveNull |
Output
The output is {vPrime,xNew}.
Output | Type | Description |
---|---|---|
vPrime | Real(Dim) | vPrime is the projection of the initial tangent vector v into the orthogonal distribution, multiplied with delta |
xNew | Real(Dim) | xNew=x+vPrime is the new point after a finite step with vPrime |
Description
cqmgGQMleafCurveIterationAdaptiveNull calculates a finite step in the orthognal direction to the hybrid leaf using omega and g (thus the null leaf) in target space. Here, vPrime is not normalized to delta but is the projection of v multiplied with delta. Compare to [1] section 3.3.
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
v={0,1,0};
delta=1;
cqmgGQMleafCurveIterationAdaptiveNull=cqmgGQMleafCurveIterationAdaptiveNullINIT[X,l];
out=cqmgGQMleafCurveIterationAdaptiveNull[x,v,delta];
cqmgGQMleafCurveIterationAdaptiveNullEXTR[out]
Unified function; finds the minimum of lambda in the orthogonal direction to the chosen distribution.
Arguments
Argument | Type | Description |
---|---|---|
X | MatConf(Dim,Nim) | a matrix configuration |
x | Real(Dim) | an initial point in target space |
l | Int | a positive even integer, the effective dimension of the quantum manifold |
leaf="TSleaf" | Str | the chosen leaf, can be "TSleaf", "QMleaf" or "GQMleaf". "TSleaf" is the hybrid leaf (using theta), "QMleaf" is the hybrid leaf using omega and "GQMleaf" is the hybrid leaf using omega and g |
delta=1 | Real | a positive finite relative step length |
nMax=100 | Int | the (positive) maximal number of steps (initial point excluded) |
epsilon=10^-8 | Real | the (positive) numerical tolerance for the minimum |
cqmgMinimizeLambda is not parallelizable.
Output
The output is {xNew,Successful,i}.
Output | Type | Description |
---|---|---|
xNew | Real(Dim) | the point that (locally) minimizes the lowest eigenvalue of the Hamiltonian in the null leaf of the chosen leaf |
Successful | Bool | True: a local minimum has been found up to tolerance epsilon; Flase: no local minimum has been found within nMax steps |
i | Int | the number of steps the were needed for success |
Description
cqmgCurveIntegrationNull finds a local minimum of lambda in the null leaf of the chosen leaf.
This is done via a gradient descent method, using that
Example(s)
An example for the fuzzy sphere:
X=qmgXsu2[4];
l=2;
x={0,0,1};
leaf="QMleaf";
cqmgMinimizeLambda[X,x,l,leaf]