Skip to content

fix: use self.embeddings.aembed_* in async methods #97

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Sep 12, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions langchain_postgres/vectorstores.py
Original file line number Diff line number Diff line change
Expand Up @@ -939,7 +939,7 @@ def similarity_search(
List of Documents most similar to the query.
"""
assert not self._async_engine, "This method must be called without async_mode"
embedding = self.embedding_function.embed_query(text=query)
embedding = self.embeddings.embed_query(query)
return self.similarity_search_by_vector(
embedding=embedding,
k=k,
Expand All @@ -964,7 +964,7 @@ async def asimilarity_search(
List of Documents most similar to the query.
"""
await self.__apost_init__() # Lazy async init
embedding = self.embedding_function.embed_query(text=query)
embedding = await self.embeddings.aembed_query(query)
return await self.asimilarity_search_by_vector(
embedding=embedding,
k=k,
Expand All @@ -988,7 +988,7 @@ def similarity_search_with_score(
List of Documents most similar to the query and score for each.
"""
assert not self._async_engine, "This method must be called without async_mode"
embedding = self.embedding_function.embed_query(query)
embedding = self.embeddings.embed_query(query)
docs = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
Expand All @@ -1011,7 +1011,7 @@ async def asimilarity_search_with_score(
List of Documents most similar to the query and score for each.
"""
await self.__apost_init__() # Lazy async init
embedding = self.embedding_function.embed_query(query)
embedding = await self.embeddings.aembed_query(query)
docs = await self.asimilarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
Expand Down Expand Up @@ -1065,7 +1065,7 @@ def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, floa
page_content=result.EmbeddingStore.document,
metadata=result.EmbeddingStore.cmetadata,
),
result.distance if self.embedding_function is not None else None,
result.distance if self.embeddings is not None else None,
)
for result in results
]
Expand Down Expand Up @@ -1569,7 +1569,7 @@ async def afrom_texts(
**kwargs: Any,
) -> PGVector:
"""Return VectorStore initialized from documents and embeddings."""
embeddings = embedding.embed_documents(list(texts))
embeddings = await embedding.aembed_documents(list(texts))
return await cls.__afrom(
texts,
embeddings,
Expand Down Expand Up @@ -1992,7 +1992,7 @@ def max_marginal_relevance_search(
Returns:
List[Document]: List of Documents selected by maximal marginal relevance.
"""
embedding = self.embedding_function.embed_query(query)
embedding = self.embeddings.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding,
k=k,
Expand Down Expand Up @@ -2031,7 +2031,7 @@ async def amax_marginal_relevance_search(
List[Document]: List of Documents selected by maximal marginal relevance.
"""
await self.__apost_init__() # Lazy async init
embedding = self.embedding_function.embed_query(query)
embedding = await self.embeddings.aembed_query(query)
return await self.amax_marginal_relevance_search_by_vector(
embedding,
k=k,
Expand Down Expand Up @@ -2070,7 +2070,7 @@ def max_marginal_relevance_search_with_score(
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
relevance to the query and score for each.
"""
embedding = self.embedding_function.embed_query(query)
embedding = self.embeddings.embed_query(query)
docs = self.max_marginal_relevance_search_with_score_by_vector(
embedding=embedding,
k=k,
Expand Down Expand Up @@ -2111,7 +2111,7 @@ async def amax_marginal_relevance_search_with_score(
relevance to the query and score for each.
"""
await self.__apost_init__() # Lazy async init
embedding = self.embedding_function.embed_query(query)
embedding = await self.embeddings.aembed_query(query)
docs = await self.amax_marginal_relevance_search_with_score_by_vector(
embedding=embedding,
k=k,
Expand Down
Loading