Skip to content

simplified notes, requirements and updated to work with 11.7 cudakit … #102

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: tensorflow_2
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
195 changes: 175 additions & 20 deletions 02_01_deep_learning_deep_neural_network.ipynb

Large diffs are not rendered by default.

48 changes: 47 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,53 @@ Part 2: Teaching Machines to Paint, Write, Compose and Play

To get started, first install the required libraries inside a virtual environment:

`pip install -r requirements.txt`
```
# install nvidia drivers if you haven't already:
#https://www.nvidia.com/Download/index.aspx

# make a tensorflow environment that works with
# 11th Gen Intel(R) Core(TM) i9-11900H @ 2.50GHz 2.50 GHz
# check your card:
nvidia-smi --query-gpu=gpu_name --format=csv|tail -n 1
# NVIDIA GeForce RTX 3050 Ti Laptop GPU
#

# install mamba for faster package management:
# sometimes you have to repeat a mamba command, its still faster than conda
conda install -n base conda-forge::mamba

mamba create -n generative tensorflow-gpu -c conda-forge
conda activate generative

pip install tf-explain
# uninstall tensorflow so it's linked to the version your cudakit needs later on
pip uninstall tensorflow

# install tool to query your nvidia toolkit version
mamba install cuda-nvcc -c nvidia
nvcc --version

# Assuming nvcc version is 11.7: will bring correct cudnn, and libcusolver.so.11:
# WARNING: 2.5.0 has a broken libcusolver
# If you install cudatoolkit any other way for 2.5.0, libcusolver.so.10 will be installed when you need so.11, and you'll get errors
mamba install cudatoolkit=11.7


### test:
python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
# ignore NUMA node warnings, they're harmless, see: https://forums.developer.nvidia.com/t/numa-error-running-tensorflow-on-jetson-tx2/56119/2
# I think this happens if GPU is number '0'
# All the libs should load
python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
# ignore NUMA node warning

mamba install jupyter
mamba install --file requirements.txt -c conda-forge -c esri

# start your notebook server
LD_LIBRARY_PATH=~/miniconda3/envs/generative/lib jupyter notebook

```



Expand Down
119 changes: 22 additions & 97 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,97 +1,22 @@
absl-py==0.8.1
appnope==0.1.0
astor==0.8.0
astunparse==1.6.3
attrs==19.2.0
backcall==0.1.0
bleach==3.1.0
cachetools==4.1.1
certifi==2020.6.20
chardet==3.0.4
cycler==0.10.0
decorator==4.4.0
defusedxml==0.6.0
entrypoints==0.3
gast==0.3.3
google-auth==1.18.0
google-auth-oauthlib==0.4.1
google-pasta==0.2.0
h5py==2.10.0
idna==2.10
imageio==2.6.1
importlib-metadata==0.23
ipykernel==5.1.2
ipython==7.8.0
ipython-genutils==0.2.0
ipywidgets==7.5.1
jedi==0.15.1
Jinja2==2.10.3
jsonschema==3.1.1
jupyter==1.0.0
jupyter-client==5.3.4
jupyter-console==6.0.0
jupyter-core==4.6.0
Keras==2.3.1
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
kiwisolver==1.1.0
Markdown==3.1.1
MarkupSafe==1.1.1
matplotlib==3.1.1
mistune==0.8.4
more-itertools==7.2.0
music21==5.7.0
nbconvert==5.6.0
nbformat==4.4.0
networkx==2.3
notebook==6.0.1
numpy==1.17.2
oauthlib==3.1.0
opt-einsum==3.1.0
pandas==0.25.1
pandocfilters==1.4.2
parso==0.5.1
pexpect==4.7.0
pickleshare==0.7.5
Pillow==6.2.0
prometheus-client==0.7.1
prompt-toolkit==2.0.10
protobuf==3.10.0
ptyprocess==0.6.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
pydot==1.4.1
pydotplus==2.0.2
Pygments==2.4.2
pyparsing==2.4.2
pyrsistent==0.15.4
python-dateutil==2.8.0
pytz==2019.3
PyYAML==5.1.2
pyzmq==18.1.0
qtconsole==4.5.5
requests==2.24.0
requests-oauthlib==1.3.0
rsa==4.6
scikit-image==0.17.2
scipy==1.4.1
Send2Trash==1.5.0
six==1.12.0
tensorboard==2.2.2
tensorboard-plugin-wit==1.7.0
tensorflow==2.2.0
tensorflow-addons==0.10.0
tensorflow-estimator==2.2.0
termcolor==1.1.0
terminado==0.8.2
testpath==0.4.2
tornado==6.0.3
traitlets==4.3.3
typeguard==2.9.1
urllib3==1.25.9
wcwidth==0.1.7
webencodings==0.5.1
Werkzeug==0.16.0
widgetsnbextension==3.5.1
wrapt==1.11.2
zipp==0.6.0
keras-applications
pillow
pyyaml
appnope
astor
chardet
cycler
imageio
kiwisolver
matplotlib
more-itertools
music21
networkx
opt-einsum
pandas
pydot
pydotplus
pytz
scikit-image
tensorflow-addons
testpath
typeguard