Skip to content

Added Amazon Bedrock for Agents, LLMs and Vector Databases from AWS #45

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 11 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,8 @@ We also included [Perplexity and Cursor.sh prompts](#formatting-prompt-templates
| [OpenAI Ada Embedding 2](https://platform.openai.com/docs/guides/embeddings) | OpenAI's most popular embedding model for capturing semantic relationships in text | n/a | <a href=https://pypi.org/project/openai><img src="https://img.shields.io/pypi/dw/openai" width=150/></a> |
| [Cohere AI](https://docs.cohere.com/docs/embeddings) | An independent commerical provider of LLMs, with particular focus on embeddings for semantic search, topic clustering, and vertical applications | <a href=https://github.com/cohere-ai/notebooks><img src="https://img.shields.io/github/stars/cohere-ai/notebooks?style=social" width=90/></a> | <a href=https://pypi.org/project/cohere><img src="https://img.shields.io/pypi/dw/cohere" width=150/></a> |
| [Sentence Transformers](https://www.sbert.net/) | An open-source Python framework for sentence, text, and image embeddings | <a href=https://github.com/UKPLab/sentence-transformers><img src="https://img.shields.io/github/stars/UKPLab/sentence-transformers?style=social" width=90/></a> | <a href=https://pypi.org/project/sentence-transformers><img src="https://img.shields.io/pypi/dw/sentence-transformers" width=150/></a> |
| [Amazon Titan Text Embeddings models](https://docs.aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html) | Amazon Titan Text Embeddings models generate meaningful semantic representations of documents, paragraphs, and sentences, providing vectors for text retrieval, semantic similarity, and clustering in over 100 languages | <a href=https://github.com/aws-samples/titan-multimodal-embeddings-workshop> <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/aws-samples/titan-multimodal-embeddings-workshop?style=social" width=90></a> | <a href=https://pypi.org/project/boto3/><img src="https://img.shields.io/pypi/dw/boto3" width=150/></a> |
| [Amazon Titan Multimodal Embeddings G1 model](https://docs.aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html) | Amazon's Multimodal Embeddings G1 model generates semantic representations for text and images, enabling applications like personalized search and image-text similarity comparisons | <a href=https://github.com/aws-samples/titan-multimodal-embeddings-workshop> <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/aws-samples/titan-multimodal-embeddings-workshop?style=social" width=90></a> | <a href=https://pypi.org/project/boto3/><img src="https://img.shields.io/pypi/dw/boto3" width=150/></a> |

<p style="text-align: right;"><a href="#table-of-contents">^ Back to Contents ^</a></p>

Expand All @@ -66,16 +68,20 @@ We also included [Perplexity and Cursor.sh prompts](#formatting-prompt-templates
| [Qdrant](https://qdrant.tech/) | A vector database and vector similarity search engine | <a href=https://github.com/qdrant/qdrant><img src="https://img.shields.io/github/stars/qdrant/qdrant?style=social" width=90/></a> | <a href=https://pypi.org/project/qdrant-client><img src="https://img.shields.io/pypi/dw/qdrant-client" width=150/></a> |
| [Metal io](https://getmetal.io/) | A managed service for developers to build applications with ML embeddings | N/A | <a href=https://pypi.org/project/metal-python><img src="https://img.shields.io/pypi/dw/metal-python" width=150/></a> |
| [LanceDB](https://lancedb.com/) | A serverless vector database for AI applications | <a href=https://github.com/lancedb/lancedb><img src="https://img.shields.io/github/stars/lancedb/lancedb?style=social" width=90/></a> | <a href=https://pypi.org/project/lancedb><img src="https://img.shields.io/pypi/dw/lancedb" width=150/></a> |
| [Amazon OpenSearch Service](https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-vector-search.html) | Amazon OpenSearch Service enables interactive log analytics, real-time application monitoring, and website search with k-Nearest Neighbor (k-NN) search capabilities for vector databases | <a href=https://github.com/aws-samples/AI-search-with-amazon-opensearch-service><img src="https://img.shields.io/github/stars/aws-samples/AI-search-with-amazon-opensearch-service?style=social" width=90/></a> | <a href=https://pypi.org/project/pinecone-client><img src="https://img.shields.io/pypi/dw/pinecone-client" width=150/></a> |
| [Amazon Aurora PostgreSQL-Compatible Edition](https://community.aws/concepts/vector-embeddings-and-rag-demystified-1) | Amazon Aurora PostgreSQL-Compatible Edition supports the pgvector extension for storing embeddings and performing efficient similarity searches in your database | <a href=https://github.com/aws-samples/aurora-postgresql-pgvector><img src="https://img.shields.io/github/stars/pgvector/pgvector?style=social" width=90/></a> | <a href=https://pypi.org/project/pgvector><img src="https://img.shields.io/pypi/dw/pgvector" width=150/></a> |
| [Vector search for Amazon DocumentDB (with MongoDB compatibility)](https://docs.aws.amazon.com/documentdb/latest/developerguide/vector-search.html) | Amazon DocumentDB supports vector search, allowing you to store, index, and search millions of vectors with millisecond response times within your document database, ideal for ML applications | <a href=https://github.com/aws-samples/amazon-documentdb-samples/tree/master/blogs><img src="https://img.shields.io/github/stars/aws-samples/amazon-documentdb-samples?style=social" width=90/></a> | <a href=https://pypi.org/project/boto3/><img src="https://img.shields.io/pypi/dw/boto3" width=150/></a> |

<p style="text-align: right;"><a href="#table-of-contents">^ Back to Contents ^</a></p>

### Playgrounds
| Name (site) | Description | Github | Pip Installs |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| [OpenAI Playground](https://platform.openai.com/) | A web-based platform for experimenting with various machine-learning models developed by OpenAI | N/A | N/A |
| [OpenAI Playground](https://platform.openai.com/) | A web-based platform for experimenting with various machine-learning models developed by OpenAI | N/A | N/A |
| [nat.dev](https://nat.dev) | A platform that allows users to test prompts with multiple language models and compare their performance | <a href=https://github.com/nat/openplayground><img src="https://img.shields.io/github/stars/nat/openplayground?style=social" width=90/></a> | <a href=https://pypi.org/project/openplayground><img src="https://img.shields.io/pypi/dw/openplayground" width=150/></a> |
| [Humanloop](https://humanloop.com/) | A platform that helps developers build applications on top of LLMs | <a href=https://github.com/humanloop/humanloop-tutorial-python><img src="https://img.shields.io/github/stars/humanloop/humanloop-tutorial-python?style=social" width=90/></a> | <a href=https://pypi.org/project/humanloop><img src="https://img.shields.io/pypi/dw/humanloop" width=150/></a> |
| [Parea AI](https://www.parea.ai/) | Platform and SDK for AI Engineers providing tools for LLM evaluation, observability, and a version-controlled enhanced prompt playground. | <a href=https://github.com/parea-ai><img src="https://img.shields.io/github/stars/parea-ai/parea-sdk-py?style=social" width=90/></a> | <a href=https://pypi.org/project/parea-ai/><img src="https://img.shields.io/pypi/dw/parea-ai" width=150/></a> |
| [Playgrounds - Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/playgrounds.html) | The Amazon Bedrock playgrounds provide a console environment to experiment with running inference on different models and configurations before using them in applications | N/A | N/A |

<p style="text-align: right;"><a href="#table-of-contents">^ Back to Contents ^</a></p>

Expand All @@ -90,6 +96,7 @@ We also included [Perplexity and Cursor.sh prompts](#formatting-prompt-templates
| [Vercel AI SDK](https://sdk.vercel.ai/docs) | An open-source library for developers to build streaming UIs in JavaScript and TypeScript | <a href=https://github.com/vercel/ai><img src="https://img.shields.io/github/stars/vercel-labs/ai?style=social" width=90/></a> | <a href=https://pypi.org/project/vercel-ai-sdk><img src="https://img.shields.io/npm/dw/ai" width=150/></a>(node/npm)|
| [Vectara AI](https://vectara.com/) | A search and discovery platform for AI conversations utilizing your own data | <a href=https://github.com/vectara/vectara-ingest><img src="https://img.shields.io/github/stars/vectara/vectara-ingest?style=social" width=90/></a> | N/A |
| [ChatGPT](https://chat.openai.com) | An AI chatbot that uses natural language processing to create humanlike conversational dialogue | N/A| N/A |
| [Agents for Amazon Bedrock](https://aws.amazon.com/bedrock/agents/) | Agents for Amazon Bedrock enhance operational efficiency, customer service, and decision-making while reducing costs and facilitating innovation | <a href=https://github.com/build-on-aws/amazon-bedrock-agents-quickstart><img src="https://img.shields.io/github/stars/build-on-aws/amazon-bedrock-agents-quickstart?style=social" width=90/></a> | <a href=https://pypi.org/project/boto3/><img src="https://img.shields.io/pypi/dw/boto3" width=150/></a> |

<p style="text-align: right;"><a href="#table-of-contents">^ Back to Contents ^</a></p>

Expand All @@ -109,6 +116,7 @@ We also included [Perplexity and Cursor.sh prompts](#formatting-prompt-templates
| [Redis](https://redis.io/) | An in-memory data structure store used as a database, cache, message broker, and streaming engine | <a href=https://github.com/redis/redis><img src="https://img.shields.io/github/stars/redis/redis?style=social" width=90/></a> | <a href=https://pypi.org/project/redis/><img src="https://img.shields.io/pypi/dw/redis" width=150/></a> |
| [SQLite](https://sqlite.org/) | A self-contained, serverless, zero-configuration, transactional SQL database engine | <a href=https://github.com/sqlite/sqlite><img src="https://img.shields.io/github/stars/sqlite/sqlite?style=social" width=90/></a> | <a href=https://pypi.org/project/pysqlite3/><img src="https://img.shields.io/pypi/dw/pysqlite3" width=150/></a> |
| [GPTCache](https://github.com/zilliztech/GPTCache) | An open-source tool for improving the efficiency and speed of GPT-based applications by implementing a cache to store the responses | <a href=https://github.com/zilliztech/GPTCache><img src="https://img.shields.io/github/stars/zilliztech/GPTCache?style=social" width=90/></a> | N/A |
| [MemoryDB for Redis](https://aws.amazon.com/memorydb) | Amazon MemoryDB for Redis is a durable, in-memory database service delivering ultra-fast performance for modern applications requiring low latency and high scalability | <a href=https://github.com/aws-samples/amazon-memorydb-for-redis-samples><img src="https://img.shields.io/github/stars/aws-samples/amazon-memorydb-for-redis-samples?style=social" width=90/></a> | <a href=https://pypi.org/project/boto3/><img src="https://img.shields.io/pypi/dw/boto3" width=150/></a> |

<p style="text-align: right;"><a href="#table-of-contents">^ Back to Contents ^</a></p>

Expand Down Expand Up @@ -137,7 +145,7 @@ We also included [Perplexity and Cursor.sh prompts](#formatting-prompt-templates
| [promptfoo](https://www.promptfoo.dev/) | Open-source LLM eval framework with support for model/prompt/RAG eval, dataset generation, local models, and self-hosting. | <a href=https://github.com/promptfoo/promptfoo><img src="https://img.shields.io/github/stars/promptfoo/promptfoo?style=social" width=90/></a> | <a href=https://www.npmjs.com/package/promptfoo><img src="https://img.shields.io/npm/dw/promptfoo" width=150/></a> (node/npm) |
| [Parea AI](https://www.parea.ai/) | Platform and SDK for AI Engineers providing tools for LLM evaluation, observability, and a version-controlled enhanced prompt playground. | <a href=https://github.com/parea-ai><img src="https://img.shields.io/github/stars/parea-ai/parea-sdk-py?style=social" width=90/></a> | <a href=https://pypi.org/project/parea-ai/><img src="https://img.shields.io/pypi/dw/parea-ai" width=150/></a> |
| [Galileo](https://www.rungalileo.io/) | Galileo is a platform for evaluation, fine-tuning and real-time observability, powered by high-accuracy hallucination guardrails. | N/A | N/A |

| [Amazon Bedrock model evaluation](https://aws.amazon.com/blogs/aws/amazon-bedrock-model-evaluation-is-now-generally-available/) | Amazon Bedrock's model evaluation helps you select the best foundation model for your use case by comparing model outputs, incorporating both automatic and human evaluations | <a href=https://github.com/aws-samples/genai-model-evaluator><img src="https://img.shields.io/github/stars/aws-samples/genai-model-evaluator?style=social" width=90/></a> | <a href=https://pypi.org/project/boto3/><img src="https://img.shields.io/pypi/dw/boto3" width=150/></a> |

<p style="text-align: right;"><a href="#table-of-contents">^ Back to Contents ^</a></p>

Expand All @@ -161,6 +169,7 @@ We also included [Perplexity and Cursor.sh prompts](#formatting-prompt-templates
| [Anthropic](https://anthropic.com) | The developer of Claude, an AI assistant based on Anthropic’s research | N/A | <a href=https://pypi.org/project/anthropic><img src="https://img.shields.io/pypi/dw/anthropic" width=150/></a> |
| [Cohere AI](https://docs.cohere.com/docs/embeddings) | An LLM vendor with particular focus on embeddings for semantic search, topic clustering, and vertical applications | <a href=https://github.com/cohere-ai/notebooks><img src="https://img.shields.io/github/stars/cohere-ai/notebooks?style=social" width=90/></a> | <a href=https://pypi.org/project/cohere><img src="https://img.shields.io/pypi/dw/cohere" width=150/></a> |
| [LLM](https://llm.datasette.io/en/stable/) | A CLI utility and Python library for interacting with Large Language Models, both via remote APIs and models that can be installed and run on your own machine. | <a href=https://github.com/simonw/llm><img src="https://img.shields.io/github/stars/simonw/llm?style=social" width=90/></a> | <a href=https://pypi.org/project/llm/><img src="https://img.shields.io/pypi/dw/llm" width=150/></a> |
| [Amazon Bedrock](https://aws.amazon.com/bedrock/) | Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities you need to build generative AI applications with security, privacy, and responsible AI | <a href=https://github.com/boto/boto3><img src="https://img.shields.io/github/stars/boto/boto3?style=social" width=90/></a> | <a href=https://pypi.org/project/boto3/><img src="https://img.shields.io/pypi/dw/boto3" width=150/></a> |

<p style="text-align: right;"><a href="#table-of-contents">^ Back to Contents ^</a></p>

Expand Down