- 3. Feature Engineering
- 4. ๐ Regression
- 5. ๐งโ๐ป Gradient Descent
- 6. ๐ฎ Regularization
- 7. ๐ Logistic Regression
- 8. ๐ด Decision Tree
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
What is Feature Engineering | โ | โ | ๐ฅ |
Column Transformer | How to transform columns | ๐จโ๐ป | ๐ฅ |
Sklearn without Pipeline | Why avoiding pipelines can cause problems | ๐จโ๐ป | ๐ฅ |
Sklearn with Pipeline | How to implement sklearn pipelines effectively | ๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
Ordinal Encoding | Ordinal categorical data preprocessing using OrdinalEncoder() |
๐จโ๐ป | ๐ฅ |
One Hot Encoding | Nominal categorical data preprocessing using OneHotEncoder() |
๐จโ๐ป | ๐ฅ |
Function Transformer | Log, reciprocal transformation using FunctionTransformer() |
๐จโ๐ป | ๐ฅ |
Power Transformer | Square, square root transformation using PowerTransformer() |
๐จโ๐ป | ๐ฅ |
Binarization | Preprocessing with Binarizer() |
๐จโ๐ป | ๐ฅ |
Binning | Preprocessing with KBinsDiscretizer() |
๐จโ๐ป | ๐ฅ |
Handling Mixed Variables | Processing datasets with both numerical & categorical features | ๐จโ๐ป | ๐ฅ |
Handling Date & Time | How to work with time and date columns | ๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
Standardization | Preprocessing using StandardScaler() |
๐จโ๐ป | ๐ฅ |
Normalization | Preprocessing using MinMaxScaler() |
๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
Complete Case Analysis | Remove NaN values |
๐จโ๐ป | ๐ฅ |
Arbitrary Value Imputation (Numerical) | Impute with arbitrary value using SimpleImputer() |
๐จโ๐ป | ๐ฅ |
Mean/Median Imputation (Numerical) | Impute with mean/median using SimpleImputer() |
๐จโ๐ป | ๐ฅ |
Missing Category Imputation (Categorical) | Fill missing with a label using SimpleImputer() |
๐จโ๐ป | ๐ฅ |
Frequent Value Imputation (Categorical) | Replace missing with most frequent value | ๐จโ๐ป | ๐ฅ |
Missing Indicator | Add binary flag for missing values (MissingIndicator() ) |
๐จโ๐ป | ๐ฅ |
Auto Imputer Parameter Tuning | Use GridSearchCV() to optimize imputer settings |
๐จโ๐ป | ๐ฅ |
Random Sample Imputation | Fill missing values with random samples | ๐จโ๐ป | ๐ฅ |
KNN Imputer | Use K-Nearest Neighbors to fill missing values | ๐จโ๐ป | ๐ฅ |
Iterative Imputer | MICE-style multivariate imputation | ๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
What is Outliers | Introduction to outliers and their impact | ๐จโ๐ป | ๐ฅ |
Outlier Removal using Z-Score | Removing outliers using Z-Score | ๐จโ๐ป | ๐ฅ |
Outlier Removal using IQR | Removing outliers using Interquartile Range (IQR) | ๐จโ๐ป | ๐ฅ |
Outlier Removal using Percentiles | Removing outliers using Percentiles | ๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
Feature Construction and Splitting | Extract useful data and split features | ๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
Curse of Dimensionality | Introduction to the "curse" of high dimensions | ๐จโ๐ป | ๐ฅ |
PCA Geometric Intuition (PCA) | Geometric understanding of PCA (Principal Component Analysis) | ๐จโ๐ป | ๐ฅ |
PCA Problem Formulation & Solution | Formulating and solving PCA problems | ๐จโ๐ป | ๐ฅ |
PCA Step by Step Implementation | Implementing PCA step by step | ๐จโ๐ป | ๐ฅ |
PCA + KNN (MNIST Dataset) | Apply PCA and KNN on the MNIST dataset | ๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
Simple LR from Scratch | Code implementation from scratch | ๐จโ๐ป | ๐ฅ |
Sklearn LR | Using LinearRegression() from sklearn |
๐จโ๐ป | ๐ฅ |
Regression Metrics | Understanding Rยฒ score, MSE, RMSE | ๐จโ๐ป | ๐ฅ |
Geometric Intuition | Understanding the geometric intuition of MLR | ๐จโ๐ป | ๐ฅ |
Multiple LR from Scratch | Code implementation from scratch | ๐จโ๐ป | ๐ฅ |
Mathematical Formulation Sklearn LR | Using LinearRegression() from sklearn |
๐จโ๐ป | ๐ฅ |
Polynomial LR | Preprocessing and using PolynomialFeatures() |
๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
Gradient Descent | Basic Introduction to Gradient Descent | ๐จโ๐ป | ๐ฅ |
Batch Simple GD | Implementing Simple Batch GD from Scratch | ๐จโ๐ป | ๐ฅ |
Batch GD | Implementing Batch Gradient Descent from Scratch | ๐จโ๐ป | ๐ฅ |
Stochastic GD | Implementing Stochastic Gradient Descent from Scratch | ๐จโ๐ป | ๐ฅ |
Mini Batch GD | Implementing Mini-Batch Gradient Descent from Scratch | ๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
Bias-Variance Trade-off | Understanding Underfitting & Overfitting | - | ๐ฅ |
Ridge Regression Geometric Intuition (Part 1) | Introduction to Regularized Linear Models | ๐จโ๐ป | ๐ฅ |
Ridge Regression Mathematical Formulation (Part 2) | Scratch for slope (m) and intercept (b) | ๐จโ๐ป | ๐ฅ |
Ridge Regression Mathematical Formulation (Part 2) | Full Scratch Implementation | ๐จโ๐ป | ๐ฅ |
Ridge Regression (Part 3) | Gradient Descent Implementation | ๐จโ๐ป | ๐ฅ |
5 Key Points about Ridge Regression | Q&A, Effects, and Insights | ๐จโ๐ป | ๐ฅ |
Lasso Regression | Full Implementation | ๐จโ๐ป | ๐ฅ |
Why Lasso Regression Creates Sparsity | Understanding Sparsity Effect | ๐จโ๐ป | ๐ฅ |
ElasticNet Regression | Comparison and Effects | ๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
LR 1 - Perceptron Trick | Why to use it, transformations, region concept | - | ๐ฅ |
LR 2 - Perceptron Trick Code | Math to algorithm conversion | ๐จโ๐ป | ๐ฅ |
LR 3 - Sigmoid Function | How the sigmoid function helps to find the error line | ๐จโ๐ป | ๐ฅ |
LR 4 - Math Behind Optimal Line | Maximum likelihood, binary cross-entropy, gradient descent | - | ๐ฅ |
Extra - Derivative of Sigmoid | Helps derive matrix form from loss function | - | ๐ฅ |
LR 5 - Logistic Regression (Gradient Descent) | Scratch implementation | ๐จโ๐ป | ๐ฅ |
LR 6 - Multinomial Logistic Regression | Softmax regression | ๐จโ๐ป | ๐ฅ |
LR 7 - Non-Linear Regression | Polynomial features | ๐จโ๐ป | ๐ฅ |
LR 8 - Hyperparameter | Sklearn documentation and hyperparameter tuning | - | ๐ฅ |
P1 Classification Metrics | Accuracy, confusion matrix, Type I & II errors, binary vs. multi-class | ๐จโ๐ป | ๐ฅ |
P2 Classification Metrics Binary | Precision, recall & F1 score (binary) | ๐จโ๐ป | ๐ฅ |
P2 Classification Metrics Multi-Class | Precision, recall & F1 score (multi-class) | ๐จโ๐ป | ๐ฅ |
Topic | What You'll Learn | Notebook | Lecture |
---|---|---|---|
D1 - Decision Tree Geometric Intuition | Entropy, Gini Impurity, Information Gain | - | ๐ฅ |
D2 - Hyperparameters | Overfitting and Underfitting | ๐จโ๐ป | ๐ฅ |
D3 - Regression Trees | Numerical Points | ๐จโ๐ป | ๐ฅ |
D4 - Awesome Decision Tree | dtreeviz Library |
๐จโ๐ป | ๐ฅ |