|
| 1 | +import os |
| 2 | +import argparse |
| 3 | +import sys |
| 4 | +# file_path_root = os.path.split(os.path.split(__file__)[0])[0] |
| 5 | +# sys.path.append('file_path_root') |
| 6 | + |
| 7 | +from robot_cell.detection.realsense_depth import DepthCamera |
| 8 | +from robot_cell.detection.packet_detector import PacketDetector |
| 9 | +ROB_CONFIG_FILE = os.path.join("config", "robot_config.json") |
| 10 | +import json |
| 11 | +from robot_cell.detection.threshold_detector import ThresholdDetector |
| 12 | +from robot_cell.detection.apriltag_detection import ProcessingApriltag |
| 13 | +import numpy as np |
| 14 | +import cv2 |
| 15 | + |
| 16 | +def rotation_angles(matrix, order): |
| 17 | + """ |
| 18 | + input |
| 19 | + matrix = 3x3 rotation matrix (numpy array) |
| 20 | + oreder(str) = rotation order of x, y, z : e.g, rotation XZY -- 'xzy' |
| 21 | + output |
| 22 | + theta1, theta2, theta3 = rotation angles in rotation order |
| 23 | + """ |
| 24 | + r11, r12, r13 = matrix[0] |
| 25 | + r21, r22, r23 = matrix[1] |
| 26 | + r31, r32, r33 = matrix[2] |
| 27 | + |
| 28 | + if order == 'xzx': |
| 29 | + theta1 = np.arctan(r31 / r21) |
| 30 | + theta2 = np.arctan(r21 / (r11 * np.cos(theta1))) |
| 31 | + theta3 = np.arctan(-r13 / r12) |
| 32 | + |
| 33 | + elif order == 'xyx': |
| 34 | + theta1 = np.arctan(-r21 / r31) |
| 35 | + theta2 = np.arctan(-r31 / (r11 *np.cos(theta1))) |
| 36 | + theta3 = np.arctan(r12 / r13) |
| 37 | + |
| 38 | + elif order == 'yxy': |
| 39 | + theta1 = np.arctan(r12 / r32) |
| 40 | + theta2 = np.arctan(r32 / (r22 *np.cos(theta1))) |
| 41 | + theta3 = np.arctan(-r21 / r23) |
| 42 | + |
| 43 | + elif order == 'yzy': |
| 44 | + theta1 = np.arctan(-r32 / r12) |
| 45 | + theta2 = np.arctan(-r12 / (r22 *np.cos(theta1))) |
| 46 | + theta3 = np.arctan(r23 / r21) |
| 47 | + |
| 48 | + elif order == 'zyz': |
| 49 | + theta1 = np.arctan(r23 / r13) |
| 50 | + theta2 = np.arctan(r13 / (r33 *np.cos(theta1))) |
| 51 | + theta3 = np.arctan(-r32 / r31) |
| 52 | + |
| 53 | + elif order == 'zxz': |
| 54 | + theta1 = np.arctan(-r13 / r23) |
| 55 | + theta2 = np.arctan(-r23 / (r33 *np.cos(theta1))) |
| 56 | + theta3 = np.arctan(r31 / r32) |
| 57 | + |
| 58 | + elif order == 'xzy': |
| 59 | + theta1 = np.arctan(r32 / r22) |
| 60 | + theta2 = np.arctan(-r12 * np.cos(theta1) / r22) |
| 61 | + theta3 = np.arctan(r13 / r11) |
| 62 | + |
| 63 | + elif order == 'xyz': |
| 64 | + theta1 = np.arctan(-r23 / r33) |
| 65 | + theta2 = np.arctan(r13 * np.cos(theta1) / r33) |
| 66 | + theta3 = np.arctan(-r12 / r11) |
| 67 | + |
| 68 | + elif order == 'yxz': |
| 69 | + theta1 = np.arctan(r13 / r33) |
| 70 | + theta2 = np.arctan(-r23 * np.cos(theta1) / r33) |
| 71 | + theta3 = np.arctan(r21 / r22) |
| 72 | + |
| 73 | + elif order == 'yzx': |
| 74 | + theta1 = np.arctan(-r31 / r11) |
| 75 | + theta2 = np.arctan(r21 * np.cos(theta1) / r11) |
| 76 | + theta3 = np.arctan(-r23 / r22) |
| 77 | + |
| 78 | + elif order == 'zyx': |
| 79 | + theta1 = np.arctan(r21 / r11) |
| 80 | + theta2 = np.arctan(-r31 * np.cos(theta1) / r11) |
| 81 | + theta3 = np.arctan(r32 / r33) |
| 82 | + |
| 83 | + elif order == 'zxy': |
| 84 | + theta1 = np.arctan(-r12 / r22) |
| 85 | + theta2 = np.arctan(r32 * np.cos(theta1) / r22) |
| 86 | + theta3 = np.arctan(-r31 / r33) |
| 87 | + |
| 88 | + theta1 = theta1 * 180 / np.pi |
| 89 | + theta2 = theta2 * 180 / np.pi |
| 90 | + theta3 = theta3 * 180 / np.pi |
| 91 | + |
| 92 | + return (theta1, theta2, theta3) |
| 93 | + |
| 94 | +def drawText( |
| 95 | + frame: np.ndarray, text: str, position: tuple[int, int], size: float = 1 |
| 96 | +) -> None: |
| 97 | + """ |
| 98 | + Draws white text with black border to the frame. |
| 99 | +
|
| 100 | + Args: |
| 101 | + frame (np.ndarray): Frame into which the text will be draw. |
| 102 | + text (str): Text to draw. |
| 103 | + position (tuple[int, int]): Position on the frame in pixels. |
| 104 | + size (float): Size modifier of the text. |
| 105 | + """ |
| 106 | + |
| 107 | + cv2.putText(frame, text, position, cv2.FONT_HERSHEY_SIMPLEX, size, (0, 0, 0), 4) |
| 108 | + cv2.putText( |
| 109 | + frame, text, position, cv2.FONT_HERSHEY_SIMPLEX, size, (255, 255, 255), 2 |
| 110 | + ) |
| 111 | + |
| 112 | +def bool_str(string: str) -> bool: |
| 113 | + """ |
| 114 | + Used in argument parser to detect boolean flags written as a string. |
| 115 | +
|
| 116 | + Args: |
| 117 | + string (str): String to be evaluated. |
| 118 | +
|
| 119 | + Returns: |
| 120 | + bool: True, False, depending on contents of the string. |
| 121 | +
|
| 122 | + Raises: |
| 123 | + argparse.ArgumentTypeError: Error in case the string does not contain any of the expected values. |
| 124 | + """ |
| 125 | + |
| 126 | + if string in ["True", "true"]: |
| 127 | + return True |
| 128 | + elif string in ["False", "false"]: |
| 129 | + return False |
| 130 | + else: |
| 131 | + raise argparse.ArgumentTypeError |
| 132 | + |
| 133 | +if __name__ == '__main__': |
| 134 | + |
| 135 | + parser = argparse.ArgumentParser(description="Robot cell input arguments.") |
| 136 | + parser.add_argument( |
| 137 | + "--config-file", |
| 138 | + default=ROB_CONFIG_FILE, |
| 139 | + type=str, |
| 140 | + dest="CONFIG_FILE", |
| 141 | + help="Path to configuration file", |
| 142 | + ) |
| 143 | + config, _ = parser.parse_known_args() |
| 144 | + |
| 145 | + # Read config file using provided path |
| 146 | + with open(config.CONFIG_FILE, "r") as file: |
| 147 | + rob_config = json.load(file) |
| 148 | + |
| 149 | + # Read all other input arguments as specified inside the config file |
| 150 | + for param in rob_config.items(): |
| 151 | + if isinstance(param[1]["default"], bool): |
| 152 | + parser.add_argument( |
| 153 | + param[1]["arg"], |
| 154 | + default=param[1]["default"], |
| 155 | + dest=param[0], |
| 156 | + help=param[1]["help"], |
| 157 | + type=bool_str, |
| 158 | + ) |
| 159 | + elif isinstance(param[1]["default"], list): |
| 160 | + parser.add_argument( |
| 161 | + param[1]["arg"], |
| 162 | + default=param[1]["default"], |
| 163 | + dest=param[0], |
| 164 | + help=param[1]["help"], |
| 165 | + nargs=len(param[1]["default"]), |
| 166 | + type=type(param[1]["default"][0]), |
| 167 | + ) |
| 168 | + elif isinstance(param[1]["default"], int): |
| 169 | + parser.add_argument( |
| 170 | + param[1]["arg"], |
| 171 | + default=param[1]["default"], |
| 172 | + dest=param[0], |
| 173 | + help=param[1]["help"], |
| 174 | + type=int, |
| 175 | + ) |
| 176 | + elif isinstance(param[1]["default"], float): |
| 177 | + parser.add_argument( |
| 178 | + param[1]["arg"], |
| 179 | + default=param[1]["default"], |
| 180 | + dest=param[0], |
| 181 | + help=param[1]["help"], |
| 182 | + type=float, |
| 183 | + ) |
| 184 | + elif isinstance(param[1]["default"], str): |
| 185 | + parser.add_argument( |
| 186 | + param[1]["arg"], |
| 187 | + default=param[1]["default"], |
| 188 | + dest=param[0], |
| 189 | + help=param[1]["help"], |
| 190 | + type=str, |
| 191 | + ) |
| 192 | + else: |
| 193 | + print(f"[WARNING] Default value of {param[0]} config parameter not handled") |
| 194 | + rob_config = parser.parse_args() |
| 195 | + |
| 196 | + # Read robot positions dictionaries from json file |
| 197 | + with open(rob_config.path_robot_positions) as file: |
| 198 | + robot_poses = json.load(file) |
| 199 | + |
| 200 | + |
| 201 | + # Program variables |
| 202 | + frame_count = 1 # Counter of frames for homography update |
| 203 | + text_size = 1 |
| 204 | + homography = None # Homography matrix |
| 205 | + |
| 206 | + # Inititalize Apriltag Detector |
| 207 | + apriltag = ProcessingApriltag() |
| 208 | + apriltag.load_world_points(rob_config.path_homography_points) |
| 209 | + |
| 210 | + detector = ThresholdDetector( |
| 211 | + rob_config.hsv_ignore_vertical, |
| 212 | + rob_config.hsv_ignore_horizontal, |
| 213 | + rob_config.hsv_max_ratio_error, |
| 214 | + rob_config.hsv_white_lower, |
| 215 | + rob_config.hsv_white_upper, |
| 216 | + rob_config.hsv_brown_lower, |
| 217 | + rob_config.hsv_brown_upper, |
| 218 | + ) |
| 219 | + |
| 220 | + camera = DepthCamera(config_path=rob_config.path_camera_config) |
| 221 | + intrinsic = camera.intr |
| 222 | + camera_parameter = [intrinsic.fx, intrinsic.fy, intrinsic.ppx, intrinsic.ppy] |
| 223 | + fx, fy, cx, cy = camera_parameter |
| 224 | + K = np.array([fx, 0, cx, 0, fy, cy, 0, 0, 1]).reshape(3, 3) |
| 225 | + dist = np.array(camera.intr.coeffs) |
| 226 | + print(K) |
| 227 | + |
| 228 | + while True: |
| 229 | + |
| 230 | + # Get frames from camera |
| 231 | + success, depth_frame, rgb_frame, colorized_depth = camera.get_frames() |
| 232 | + if not success: |
| 233 | + continue |
| 234 | + |
| 235 | + |
| 236 | + frame_height, frame_width, frame_channel_count = rgb_frame.shape |
| 237 | + text_size = frame_height / 1000 |
| 238 | + |
| 239 | + # rgb_frame is used for detection, image_frame is used for graphics and displayed |
| 240 | + image_frame = rgb_frame.copy() |
| 241 | + |
| 242 | + # HOMOGRAPHY UPDATE |
| 243 | + ################## |
| 244 | + |
| 245 | + apriltag.detect_tags(rgb_frame) |
| 246 | + homography = apriltag.compute_homog() |
| 247 | + |
| 248 | + gray_frame = cv2.cvtColor(image_frame, cv2.COLOR_BGR2GRAY) |
| 249 | + (corners, ids, rejected) = cv2.aruco.detectMarkers( |
| 250 | + gray_frame, |
| 251 | + cv2.aruco.Dictionary_get(cv2.aruco.DICT_APRILTAG_36h11), |
| 252 | + parameters=cv2.aruco.DetectorParameters_create(), |
| 253 | + ) |
| 254 | + |
| 255 | + |
| 256 | + transformation_marker = np.eye(4) |
| 257 | + |
| 258 | + for (tag_corners, tag_id) in zip(corners, ids): |
| 259 | + |
| 260 | + |
| 261 | + if tag_id == 1: |
| 262 | + # Get (x, y) corners of the tag |
| 263 | + corners = tag_corners.reshape((4, 2)) |
| 264 | + (top_left, top_right, bottom_right, bottom_left) = corners |
| 265 | + |
| 266 | + top_left = (int(top_left[0]), int(top_left[1])) |
| 267 | + top_right = (int(top_right[0]), int(top_right[1])) |
| 268 | + bottom_right = (int(bottom_right[0]), int(bottom_right[1])) |
| 269 | + bottom_left = (int(bottom_left[0]), int(bottom_left[1])) |
| 270 | + |
| 271 | + # Compute centroid |
| 272 | + cX = int((top_left[0] + bottom_right[0]) / 2.0) |
| 273 | + cY = int((top_left[1] + bottom_right[1]) / 2.0) |
| 274 | + |
| 275 | + cv2.circle(image_frame, (cX,cY), 10, (255, 0, 0), -1) |
| 276 | + |
| 277 | + # TODO : check why 3d points from depth camera and tvec doesnt corresponds |
| 278 | + marker_centroid = [cX, cY] |
| 279 | + rvec, tvec, markerPoints =cv2.aruco.estimatePoseSingleMarkers(tag_corners, 0.05, K, dist) |
| 280 | + tdp_marker_center = camera.pixel_to_3d_point(marker_centroid, camera.get_raw_depth_frame()) |
| 281 | + |
| 282 | + rotation_matrix, idk = cv2.Rodrigues(rvec) |
| 283 | + angle_marker_w2c = rotation_angles(rotation_matrix, 'zyx') # zxy |
| 284 | + # print(angle_marker_w2c) |
| 285 | + |
| 286 | + transformation_marker[:3, :3] = rotation_matrix |
| 287 | + transformation_marker[:3,3:] = tvec.reshape(3,1) |
| 288 | + transformation_marker = np.linalg.inv(transformation_marker) |
| 289 | + |
| 290 | + # marker_point = camera.pixel_to_3d_point(marker_centroid, camera.get_raw_depth_frame()) |
| 291 | + # print(marker_point, tvec) |
| 292 | + |
| 293 | + # TODO: save this transformation matrix |
| 294 | + |
| 295 | + image_frame = apriltag.draw_tags(image_frame) |
| 296 | + detector.set_homography(homography) |
| 297 | + image_frame, detected_packets, mask = detector.detect_packet_hsv(rgb_frame,0,True) |
| 298 | + |
| 299 | + |
| 300 | + |
| 301 | + for packet in detected_packets: |
| 302 | + # Draw packet centroid value in milimeters |
| 303 | + text_centroid = "X: {:.2f}, Y: {:.2f} (mm)".format( |
| 304 | + packet.centroid_mm.x, packet.centroid_mm.y |
| 305 | + ) |
| 306 | + drawText( |
| 307 | + image_frame, |
| 308 | + text_centroid, |
| 309 | + (packet.centroid_px.x + 10, packet.centroid_px.y + int(80 * text_size)), |
| 310 | + text_size, |
| 311 | + ) |
| 312 | + |
| 313 | + pixel = [packet.centroid_px.x, packet.centroid_px.y] |
| 314 | + threed_point = np.array(camera.pixel_to_3d_point(pixel, camera.get_raw_depth_frame())).reshape(3, 1) |
| 315 | + threed_point = np.append(threed_point, 1) |
| 316 | + |
| 317 | + |
| 318 | + transformed_3d_point = np.matmul(transformation_marker, threed_point) |
| 319 | + print(transformed_3d_point * 1000) |
| 320 | + |
| 321 | + image_frame = cv2.resize(image_frame, (960, 540)) |
| 322 | + cv2.imshow('window_name', image_frame) |
| 323 | + |
| 324 | + # Press Q on keyboard to exit |
| 325 | + if cv2.waitKey(25) & 0xFF == ord('q'): |
| 326 | + break |
| 327 | + |
| 328 | + # closing all open windows |
| 329 | + cv2.destroyAllWindows() |
| 330 | + |
| 331 | + |
0 commit comments