|
1 | 1 | import dataclasses
|
2 | 2 | import inspect
|
| 3 | +import struct |
3 | 4 | import sys
|
4 | 5 | import types
|
5 | 6 | import typing
|
| 7 | +from enum import Enum |
6 | 8 | from typing import Any
|
7 | 9 | from typing import Dict
|
| 10 | +from typing import Iterable |
8 | 11 |
|
9 | 12 | from .typing import Masked
|
10 | 13 |
|
@@ -176,3 +179,164 @@ def is_pydantic(obj: Any) -> bool:
|
176 | 179 | if get_module(x) == 'pydantic'
|
177 | 180 | and get_type_name(x) == 'BaseModel'
|
178 | 181 | ])
|
| 182 | + |
| 183 | + |
| 184 | +class VectorTypes(str, Enum): |
| 185 | + """Enum for vector types.""" |
| 186 | + F16 = 'f16' |
| 187 | + F32 = 'f32' |
| 188 | + F64 = 'f64' |
| 189 | + I8 = 'i8' |
| 190 | + I16 = 'i16' |
| 191 | + I32 = 'i32' |
| 192 | + I64 = 'i64' |
| 193 | + |
| 194 | + |
| 195 | +def unpack_vector( |
| 196 | + obj: Any, |
| 197 | + element_type: VectorTypes = VectorTypes.F32, |
| 198 | +) -> Iterable[Any]: |
| 199 | + """ |
| 200 | + Unpack a vector from bytes. |
| 201 | +
|
| 202 | + Parameters |
| 203 | + ---------- |
| 204 | + obj : Any |
| 205 | + The object to unpack. |
| 206 | + element_type : VectorTypes |
| 207 | + The type of the elements in the vector. |
| 208 | + Can be one of 'f32', 'f64', 'i8', 'i16', 'i32', or 'i64'. |
| 209 | + Default is 'f32'. |
| 210 | +
|
| 211 | + Returns |
| 212 | + ------- |
| 213 | + Iterable[Any] |
| 214 | + The unpacked vector. |
| 215 | +
|
| 216 | + """ |
| 217 | + if isinstance(obj, (bytes, bytearray, list, tuple)): |
| 218 | + if element_type == 'f32': |
| 219 | + n = len(obj) // 4 |
| 220 | + fmt = 'f' |
| 221 | + elif element_type == 'f64': |
| 222 | + n = len(obj) // 8 |
| 223 | + fmt = 'd' |
| 224 | + elif element_type == 'i8': |
| 225 | + n = len(obj) |
| 226 | + fmt = 'b' |
| 227 | + elif element_type == 'i16': |
| 228 | + n = len(obj) // 2 |
| 229 | + fmt = 'h' |
| 230 | + elif element_type == 'i32': |
| 231 | + n = len(obj) // 4 |
| 232 | + fmt = 'i' |
| 233 | + elif element_type == 'i64': |
| 234 | + n = len(obj) // 8 |
| 235 | + fmt = 'q' |
| 236 | + else: |
| 237 | + raise ValueError(f'unsupported element type: {element_type}') |
| 238 | + |
| 239 | + if isinstance(obj, (bytes, bytearray)): |
| 240 | + return struct.unpack(f'<{n}{fmt}', obj) |
| 241 | + return tuple([struct.unpack(f'<{n}{fmt}', x) for x in obj]) |
| 242 | + |
| 243 | + if element_type == 'f32': |
| 244 | + np_type = 'f4' |
| 245 | + elif element_type == 'f64': |
| 246 | + np_type = 'f8' |
| 247 | + elif element_type == 'i8': |
| 248 | + np_type = 'i1' |
| 249 | + elif element_type == 'i16': |
| 250 | + np_type = 'i2' |
| 251 | + elif element_type == 'i32': |
| 252 | + np_type = 'i4' |
| 253 | + elif element_type == 'i64': |
| 254 | + np_type = 'i8' |
| 255 | + else: |
| 256 | + raise ValueError(f'unsupported element type: {element_type}') |
| 257 | + |
| 258 | + if is_numpy(obj): |
| 259 | + import numpy as np |
| 260 | + return np.array([np.frombuffer(x, dtype=np_type) for x in obj]) |
| 261 | + |
| 262 | + if is_pandas_series(obj): |
| 263 | + import numpy as np |
| 264 | + import pandas as pd |
| 265 | + return pd.Series([np.frombuffer(x, dtype=np_type) for x in obj]) |
| 266 | + |
| 267 | + if is_polars_series(obj): |
| 268 | + import numpy as np |
| 269 | + import polars as pl |
| 270 | + return pl.Series([np.frombuffer(x, dtype=np_type) for x in obj]) |
| 271 | + |
| 272 | + if is_pyarrow_array(obj): |
| 273 | + import numpy as np |
| 274 | + import pyarrow as pa |
| 275 | + return pa.array([np.frombuffer(x, dtype=np_type) for x in obj]) |
| 276 | + |
| 277 | + raise ValueError( |
| 278 | + f'unsupported object type: {type(obj)}', |
| 279 | + ) |
| 280 | + |
| 281 | + |
| 282 | +def pack_vector( |
| 283 | + obj: Any, |
| 284 | + element_type: VectorTypes = VectorTypes.F32, |
| 285 | +) -> bytes: |
| 286 | + """ |
| 287 | + Pack a vector into bytes. |
| 288 | +
|
| 289 | + Parameters |
| 290 | + ---------- |
| 291 | + obj : Any |
| 292 | + The object to pack. |
| 293 | + element_type : VectorTypes |
| 294 | + The type of the elements in the vector. |
| 295 | + Can be one of 'f32', 'f64', 'i8', 'i16', 'i32', or 'i64'. |
| 296 | + Default is 'f32'. |
| 297 | +
|
| 298 | + Returns |
| 299 | + ------- |
| 300 | + bytes |
| 301 | + The packed vector. |
| 302 | +
|
| 303 | + """ |
| 304 | + if element_type == 'f32': |
| 305 | + fmt = 'f' |
| 306 | + elif element_type == 'f64': |
| 307 | + fmt = 'd' |
| 308 | + elif element_type == 'i8': |
| 309 | + fmt = 'b' |
| 310 | + elif element_type == 'i16': |
| 311 | + fmt = 'h' |
| 312 | + elif element_type == 'i32': |
| 313 | + fmt = 'i' |
| 314 | + elif element_type == 'i64': |
| 315 | + fmt = 'q' |
| 316 | + else: |
| 317 | + raise ValueError(f'unsupported element type: {element_type}') |
| 318 | + |
| 319 | + if isinstance(obj, (list, tuple)): |
| 320 | + return struct.pack(f'<{len(obj)}{fmt}', *obj) |
| 321 | + |
| 322 | + elif is_numpy(obj): |
| 323 | + return obj.tobytes() |
| 324 | + |
| 325 | + elif is_pandas_series(obj): |
| 326 | + # TODO: Nested vectors |
| 327 | + import pandas as pd |
| 328 | + return pd.Series(obj).to_numpy().tobytes() |
| 329 | + |
| 330 | + elif is_polars_series(obj): |
| 331 | + # TODO: Nested vectors |
| 332 | + import polars as pl |
| 333 | + return pl.Series(obj).to_numpy().tobytes() |
| 334 | + |
| 335 | + elif is_pyarrow_array(obj): |
| 336 | + # TODO: Nested vectors |
| 337 | + import pyarrow as pa |
| 338 | + return pa.array(obj).to_numpy().tobytes() |
| 339 | + |
| 340 | + raise ValueError( |
| 341 | + f'unsupported object type: {type(obj)}', |
| 342 | + ) |
0 commit comments