1
- # import itertools
2
- #
3
- # import tensorflow_datasets as tfds
4
- # from dotenv import load_dotenv
5
- #
6
- # # noinspection PyUnresolvedReferences
7
- # # from sign_language_datasets.datasets.dgs_corpus import DgsCorpusConfig
8
- # from sign_language_datasets.datasets.dgs_corpus import DgsCorpusConfig
9
- #
10
- # import sign_language_datasets.datasets
11
- #
12
- # # noinspection PyUnresolvedReferences
13
- # # import sign_language_datasets.datasets.dgs_corpus
14
- # from sign_language_datasets.datasets.config import SignDatasetConfig
15
- # # from sign_language_datasets.datasets.dgs_corpus.dgs_corpus import DgsCorpusConfig
16
- #
17
- # load_dotenv()
18
- #
19
- # # config = SignDatasetConfig(name="only-annotations", version="3.0.0", include_video=False)
20
- # # rwth_phoenix2014_t = tfds.load(name="rwth_phoenix2014_t", builder_kwargs=dict(config=config))
21
- #
22
- # # config = SignDatasetConfig(name="256x256:10", include_video=True, fps=10, resolution=(256, 256))
23
- #
24
- # # aslg_pc12 = tfds.load('aslg_pc12')
25
- # #
26
- # # rwth_phoenix2014_t = tfds.load('rwth_phoenix2014_t', builder_kwargs=dict(config=config))
27
- #
28
- # # wlasl = tfds.load('wlasl', builder_kwargs=dict(config=config))
29
- # #
30
- # # autsl = tfds.load('autsl', builder_kwargs=dict(
31
- # # config=SignDatasetConfig(name="test", include_video=False, include_pose="holistic"),
32
- # # ))
33
- #
34
- # # dgs_config = DgsCorpusConfig(name="sentence-test-video", data_type="sentence",
35
- # # include_video=False, process_video=False, include_pose=None)
36
- # # dgs_corpus = tfds.load('dgs_corpus', builder_kwargs=dict(config=dgs_config))
37
- # #
38
- # # for datum in itertools.islice(dgs_corpus["train"], 0, 10):
39
- # # print(datum)
40
- #
41
- #
42
- # config = SignDatasetConfig(name="signbank-annotations", version="1.0.0", include_video=False)
43
- # signbank = tfds.load('sign_bank', builder_kwargs=dict(config=config))
44
- #
45
- # # config = SignDatasetConfig(name="signsuisse3", version="1.0.0", include_video=False, include_pose="holistic")
46
- # # signsuisse = tfds.load('sign_suisse', builder_kwargs=dict(config=config))
47
- #
48
- # # print([d["p.ose"]["data"].shape for d in iter(autsl["train"])])
49
- # # print([d["video"].shape for d in iter(autsl["train"])])
50
- #
51
- # # config = SignDatasetConfig(name="include4", version="1.0.0", extra={"PHPSESSID": "hj9co07ct7f5noq529no9u09l4"})
52
- # # signtyp = tfds.load(name='sign_typ', builder_kwargs=dict(config=config))
53
- # #
54
- # # for datum in itertools.islice(signtyp["train"], 0, 10):
55
- # # print(datum['sign_writing'].numpy().decode('utf-8'), datum['video'].numpy().decode('utf-8'))
56
- # #
57
- # # config = SignDatasetConfig(name="poses_1", version="1.0.0", include_video=False, include_pose="holistic")
58
- # # dicta_sign = tfds.load(name='dicta_sign', builder_kwargs={"config": config})
59
- #
60
- # # config = SignDatasetConfig(name="only-annotations5", version="1.0.0", include_video=False, process_video=False, include_pose="holistic")
61
- # # dataset = tfds.load(name='sign_bank', builder_kwargs=dict(config=SignDatasetConfig(name="annotations")))
62
- # #
63
- # # decode_str = lambda s: s.numpy().decode('utf-8')
64
- # # for datum in itertools.islice(dataset["train"], 0, 10):
65
- # # hamnosys = decode_str(datum['hamnosys'])
66
- # # glosses = [decode_str(g) for g in datum["glosses"]]
67
- # # print(hamnosys, glosses)
68
- #
69
- #
70
- # #
71
- # # import tensorflow_datasets as tfds
72
- # # # noinspection PyUnresolvedReferences
73
- # # import sign_language_datasets.datasets
74
- # # from sign_language_datasets.datasets.config import SignDatasetConfig
75
- # #
76
- # # # Populate your access tokens
77
- # # TOKENS = {
78
- # # "zenodo_focusnews_token": "TODO",
79
- # # "zenodo_srf_videos_token": "TODO",
80
- # # "zenodo_srf_poses_token": "TODO"
81
- # # }
82
- # #
83
- # # # Load only the annotations, and include path to video files
84
- # # config = SignDatasetConfig(name="annotations", version="1.0.0", process_video=False)
85
- # # wmtslt = tfds.load(name='wmtslt', builder_kwargs={"config": config, **TOKENS})
86
- # #
87
- # # # Load the annotations and openpose poses
88
- # # config = SignDatasetConfig(name="openpose", version="1.0.0", process_video=False, include_pose='openpose')
89
- # # wmtslt = tfds.load(name='wmtslt', builder_kwargs={"config": config, **TOKENS})
90
- # #
91
- # # # Load the annotations and mediapipe holistic poses
92
- # # config = SignDatasetConfig(name="holistic", version="1.0.0", process_video=False, include_pose='holistic')
93
- # # wmtslt = tfds.load(name='wmtslt', builder_kwargs={"config": config, **TOKENS})
94
- # #
95
- # # # Load the full video frames as a tensor
96
- # # config = SignDatasetConfig(name="videos", version="1.0.0", process_video=True)
97
- # # wmtslt = tfds.load(name='wmtslt', builder_kwargs={"config": config, **TOKENS})
98
- # #
99
- # decode_str = lambda s: s.numpy().decode('utf-8')
100
- # for datum in itertools.islice(signsuisse["train"], 0, 10):
101
- # print(datum)
102
- # print(datum["pose"])
103
- # print('\n')
104
- #
105
- #
106
- #
1
+ import itertools
107
2
108
- import tensorflow_datasets as tfds
109
- import sign_language_datasets .datasets
110
3
from sign_language_datasets .datasets .config import SignDatasetConfig
4
+ import tensorflow_datasets as tfds
111
5
112
- import itertools
113
- #
114
- # config = SignDatasetConfig(name="holistic-poses", version="3.0.0", include_video=False, include_pose="holistic")
115
- # rwth_phoenix2014_t = tfds.load(name='rwth_phoenix2014_t', builder_kwargs=dict(config=config))
116
- #
117
- # for datum in itertools.islice(rwth_phoenix2014_t["train"], 0, 10):
118
- # print(datum['gloss'].numpy().decode('utf-8'))
119
- # print(datum['text'].numpy().decode('utf-8'))
120
- # print(datum['pose']['data'].shape)
121
- # print()
122
-
6
+ config = SignDatasetConfig (
7
+ name = "pose_holistic_paths2" ,
8
+ version = "3.0.0" ,
9
+ include_video = False ,
10
+ include_pose = "holistic" ,
11
+ process_pose = False
12
+ )
123
13
124
- config = SignDatasetConfig ( name = "holistic-poses" , version = "1.0.0" , include_video = False , include_pose = "holistic" )
125
- mediapi_skel = tfds .load (name = 'mediapi_skel ' , builder_kwargs = dict (config = config ))
14
+ # Load the dgs_types dataset with the specified configuration
15
+ dgs_types = tfds .load ('dgs_types ' , builder_kwargs = dict (config = config ))
126
16
127
- for datum in itertools .islice (mediapi_skel ["test" ], 0 , 10 ):
128
- print (datum ['id' ].numpy ().decode ('utf-8' ))
129
- print (datum ['subtitles' ])
130
- print (datum ['pose' ]['data' ].shape )
131
- print ()
17
+ for datum in dgs_types ["train" ].take (10 ):
18
+ print (datum )
0 commit comments