diff --git a/.github/workflows/dev.yml b/.github/workflows/dev.yml index 64b8f80b..930833d9 100644 --- a/.github/workflows/dev.yml +++ b/.github/workflows/dev.yml @@ -13,14 +13,6 @@ jobs: - name: Checkout uses: actions/checkout@v3 - - name: Set up Python - uses: useblacksmith/setup-python@v6 - with: - python-version: "3.10" - - - name: Install dependencies - run: pip install -r requirements.txt - - name: Clear space to remove unused folders run: | rm -rf /usr/share/dotnet diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml index 74cfeccf..b7bf15fd 100644 --- a/.github/workflows/release.yml +++ b/.github/workflows/release.yml @@ -1,10 +1,10 @@ -name: Release +name: release on: workflow_dispatch: -# push: -# branches: -# - "main" + push: + branches: + - "main" jobs: release: @@ -21,14 +21,6 @@ jobs: with: persist-credentials: false - - name: Set up Python - uses: useblacksmith/setup-python@v6 - with: - python-version: "3.10" - - - name: Install dependencies - run: pip install -r requirements.txt - - name: Clear space to remove unused folders run: | rm -rf /usr/share/dotnet @@ -55,6 +47,7 @@ jobs: uses: codfish/semantic-release-action@v3 id: semanticrelease with: + dry-run: true additional-packages: | ['@semantic-release/git', '@semantic-release/changelog', '@semantic-release/exec'] env: diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index be42f71a..2f95b51e 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -19,15 +19,10 @@ jobs: - name: Set up Python uses: useblacksmith/setup-python@v6 with: - python-version: "3.10" + python-version: "3.11" - name: Install dependencies run: pip install -r requirements.txt - name: Run Python tests run: python -m unittest discover - - - name: Run snapshot restoration tests - run: | - chmod +x tests/test_restore_snapshot.sh - ./tests/test_restore_snapshot.sh diff --git a/.releaserc b/.releaserc index 7a113926..8a04e1ea 100644 --- a/.releaserc +++ b/.releaserc @@ -1,6 +1,7 @@ { "branches": [ - "main" + "main", + "feat/refactor" ], "tagFormat": "${version}", "plugins": [ diff --git a/.runpod/hub.json b/.runpod/hub.json index 7c879af6..4225f707 100644 --- a/.runpod/hub.json +++ b/.runpod/hub.json @@ -19,24 +19,6 @@ "description": "When enabled, the worker will stop after each finished job to have a clean state", "default": false } - }, - { - "key": "COMFY_POLLING_INTERVAL_MS", - "input": { - "name": "Polling Interval (ms)", - "type": "number", - "description": "Time to wait between poll attempts in milliseconds", - "default": 250 - } - }, - { - "key": "COMFY_POLLING_MAX_RETRIES", - "input": { - "name": "Max Polling Retries", - "type": "number", - "description": "Maximum number of poll attempts. Increase for longer workflows", - "default": 500 - } } ] } diff --git a/.runpod/tests.json b/.runpod/tests.json index 425ef06f..74bf2fbd 100644 --- a/.runpod/tests.json +++ b/.runpod/tests.json @@ -73,24 +73,11 @@ { "key": "REFRESH_WORKER", "value": "false" - }, - { - "key": "COMFY_POLLING_INTERVAL_MS", - "value": "250" - }, - { - "key": "COMFY_POLLING_MAX_RETRIES", - "value": "500" } ], "allowedCudaVersions": [ "12.7", - "12.6", - "12.5", - "12.4", - "12.3", - "12.2", - "12.1" + "12.6" ] } } diff --git a/CHANGELOG.md b/CHANGELOG.md index fe183430..2070634a 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,3 +1,16 @@ +# [4.1.0](https://github.com/runpod-workers/worker-comfyui/compare/4.0.1...4.1.0) (2025-05-02) + + +### Bug Fixes + +* moved code back into stage 1 ([d9ed145](https://github.com/runpod-workers/worker-comfyui/commit/d9ed14571308ad27481ae2dda4762d32b73b5d20)) + + +### Features + +* move stuff around ([2b2bc12](https://github.com/runpod-workers/worker-comfyui/commit/2b2bc1238dec5715092fa4b3e1418b8a443a409b)) +* removed polling; added websocket; allow multiple output images; ([79a560f](https://github.com/runpod-workers/worker-comfyui/commit/79a560f46fbd303828175d138098faebd4baa97e)) + # [3.6.0](https://github.com/blib-la/runpod-worker-comfy/compare/3.5.0...3.6.0) (2025-03-12) diff --git a/Dockerfile b/Dockerfile index 08cb3e5f..3153161a 100644 --- a/Dockerfile +++ b/Dockerfile @@ -6,7 +6,7 @@ ENV DEBIAN_FRONTEND=noninteractive # Prefer binary wheels over source distributions for faster pip installations ENV PIP_PREFER_BINARY=1 # Ensures output from python is printed immediately to the terminal without buffering -ENV PYTHONUNBUFFERED=1 +ENV PYTHONUNBUFFERED=1 # Speed up some cmake builds ENV CMAKE_BUILD_PARALLEL_LEVEL=8 @@ -30,7 +30,7 @@ RUN pip install uv RUN uv pip install comfy-cli --system # Install ComfyUI -RUN /usr/bin/yes | comfy --workspace /comfyui install --version 0.3.29 --cuda-version 12.6 --nvidia --skip-manager +RUN /usr/bin/yes | comfy --workspace /comfyui install --version 0.3.30 --cuda-version 12.6 --nvidia # Change working directory to ComfyUI WORKDIR /comfyui @@ -41,21 +41,14 @@ ADD src/extra_model_paths.yaml ./ # Go back to the root WORKDIR / -# install dependencies -RUN uv pip install runpod requests --system +# Install Python runtime dependencies for the handler +RUN uv pip install runpod requests websocket-client --system +# Add application code and scripts +ADD src/start.sh handler.py test_input.json ./ +RUN chmod +x /start.sh -# Add files -ADD src/start.sh src/restore_snapshot.sh src/rp_handler.py test_input.json ./ -RUN chmod +x /start.sh /restore_snapshot.sh - -# Optionally copy the snapshot file -ADD *snapshot*.json / - -# Restore the snapshot to install custom nodes -RUN /restore_snapshot.sh - -# Start container +# Set the default command to run when starting the container CMD ["/start.sh"] # Stage 2: Download models @@ -73,32 +66,35 @@ RUN mkdir -p models/checkpoints models/vae models/unet models/clip # Download checkpoints/vae/unet/clip models to include in image based on model type RUN if [ "$MODEL_TYPE" = "sdxl" ]; then \ - wget -O models/checkpoints/sd_xl_base_1.0.safetensors https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors && \ - wget -O models/vae/sdxl_vae.safetensors https://huggingface.co/stabilityai/sdxl-vae/resolve/main/sdxl_vae.safetensors && \ - wget -O models/vae/sdxl-vae-fp16-fix.safetensors https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/resolve/main/sdxl_vae.safetensors; \ - elif [ "$MODEL_TYPE" = "sd3" ]; then \ - wget --header="Authorization: Bearer ${HUGGINGFACE_ACCESS_TOKEN}" -O models/checkpoints/sd3_medium_incl_clips_t5xxlfp8.safetensors https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/sd3_medium_incl_clips_t5xxlfp8.safetensors; \ - elif [ "$MODEL_TYPE" = "flux1-schnell" ]; then \ - wget -O models/unet/flux1-schnell.safetensors https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/flux1-schnell.safetensors && \ - wget -O models/clip/clip_l.safetensors https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/clip_l.safetensors && \ - wget -O models/clip/t5xxl_fp8_e4m3fn.safetensors https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/t5xxl_fp8_e4m3fn.safetensors && \ - wget -O models/vae/ae.safetensors https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/ae.safetensors; \ - elif [ "$MODEL_TYPE" = "flux1-dev" ]; then \ - # Full precision FLUX.1 dev - wget --header="Authorization: Bearer ${HUGGINGFACE_ACCESS_TOKEN}" -O models/unet/flux1-dev.safetensors https://huggingface.co/black-forest-labs/FLUX.1-dev/resolve/main/flux1-dev.safetensors && \ - wget -O models/clip/clip_l.safetensors https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/clip_l.safetensors && \ - wget -O models/clip/t5xxl_fp8_e4m3fn.safetensors https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/t5xxl_fp8_e4m3fn.safetensors && \ - wget --header="Authorization: Bearer ${HUGGINGFACE_ACCESS_TOKEN}" -O models/vae/ae.safetensors https://huggingface.co/black-forest-labs/FLUX.1-dev/resolve/main/ae.safetensors; \ - elif [ "$MODEL_TYPE" = "flux1-dev-fp8" ]; then \ - # Default model if none specified during build - wget -O models/checkpoints/flux1-dev-fp8.safetensors https://huggingface.co/Comfy-Org/flux1-dev/resolve/main/flux1-dev-fp8.safetensors; \ + wget -q -O models/checkpoints/sd_xl_base_1.0.safetensors https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors && \ + wget -q -O models/vae/sdxl_vae.safetensors https://huggingface.co/stabilityai/sdxl-vae/resolve/main/sdxl_vae.safetensors && \ + wget -q -O models/vae/sdxl-vae-fp16-fix.safetensors https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/resolve/main/sdxl_vae.safetensors; \ + fi + +RUN if [ "$MODEL_TYPE" = "sd3" ]; then \ + wget -q --header="Authorization: Bearer ${HUGGINGFACE_ACCESS_TOKEN}" -O models/checkpoints/sd3_medium_incl_clips_t5xxlfp8.safetensors https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/sd3_medium_incl_clips_t5xxlfp8.safetensors; \ + fi + +RUN if [ "$MODEL_TYPE" = "flux1-schnell" ]; then \ + wget -q --header="Authorization: Bearer ${HUGGINGFACE_ACCESS_TOKEN}" -O models/unet/flux1-schnell.safetensors https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/flux1-schnell.safetensors && \ + wget -q -O models/clip/clip_l.safetensors https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/clip_l.safetensors && \ + wget -q -O models/clip/t5xxl_fp8_e4m3fn.safetensors https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/t5xxl_fp8_e4m3fn.safetensors && \ + wget -q --header="Authorization: Bearer ${HUGGINGFACE_ACCESS_TOKEN}" -O models/vae/ae.safetensors https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/ae.safetensors; \ + fi + +RUN if [ "$MODEL_TYPE" = "flux1-dev" ]; then \ + wget -q --header="Authorization: Bearer ${HUGGINGFACE_ACCESS_TOKEN}" -O models/unet/flux1-dev.safetensors https://huggingface.co/black-forest-labs/FLUX.1-dev/resolve/main/flux1-dev.safetensors && \ + wget -q -O models/clip/clip_l.safetensors https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/clip_l.safetensors && \ + wget -q -O models/clip/t5xxl_fp8_e4m3fn.safetensors https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/t5xxl_fp8_e4m3fn.safetensors && \ + wget -q --header="Authorization: Bearer ${HUGGINGFACE_ACCESS_TOKEN}" -O models/vae/ae.safetensors https://huggingface.co/black-forest-labs/FLUX.1-dev/resolve/main/ae.safetensors; \ + fi + +RUN if [ "$MODEL_TYPE" = "flux1-dev-fp8" ]; then \ + wget -q -O models/checkpoints/flux1-dev-fp8.safetensors https://huggingface.co/Comfy-Org/flux1-dev/resolve/main/flux1-dev-fp8.safetensors; \ fi # Stage 3: Final image FROM base AS final # Copy models from stage 2 to the final image -COPY --from=downloader /comfyui/models /comfyui/models - -# Start container -CMD ["/start.sh"] \ No newline at end of file +COPY --from=downloader /comfyui/models /comfyui/models \ No newline at end of file diff --git a/README.md b/README.md index 1a2d13b7..61a987b7 100644 --- a/README.md +++ b/README.md @@ -10,464 +10,175 @@ --- - +This project allows you to run ComfyUI workflows as a serverless API endpoint on the RunPod platform. Submit workflows via API calls and receive generated images as base64 strings or S3 URLs. + +## Table of Contents - [Quickstart](#quickstart) -- [Features](#features) -- [Config](#config) - - [Upload image to AWS S3](#upload-image-to-aws-s3) -- [Use the Docker image on RunPod](#use-the-docker-image-on-runpod) - - [Create your template (optional)](#create-your-template-optional) - - [Create your endpoint](#create-your-endpoint) - - [GPU recommendations](#gpu-recommendations) -- [API specification](#api-specification) - - [JSON Request Body](#json-request-body) - - [Fields](#fields) - - ["input.images"](#inputimages) -- [Interact with your RunPod API](#interact-with-your-runpod-api) - - [Health status](#health-status) - - [Generate an image](#generate-an-image) - - [Example request for SDXL with cURL](#example-request-for-sdxl-with-curl) -- [How to get the workflow from ComfyUI?](#how-to-get-the-workflow-from-comfyui) -- [Bring Your Own Models and Nodes](#bring-your-own-models-and-nodes) - - [Network Volume](#network-volume) - - [Custom Docker Image](#custom-docker-image) - - [Adding Custom Models](#adding-custom-models) - - [Adding Custom Nodes](#adding-custom-nodes) - - [Building the Image](#building-the-image) -- [Local testing](#local-testing) - - [Setup](#setup) - - [Setup for Windows](#setup-for-windows) - - [Testing the RunPod handler](#testing-the-runpod-handler) - - [Local API](#local-api) - - [Access the local Worker API](#access-the-local-worker-api) - - [Access local ComfyUI](#access-local-comfyui) -- [Automatically deploy to Docker hub with GitHub Actions](#automatically-deploy-to-docker-hub-with-github-actions) -- [Acknowledgments](#acknowledgments) - - +- [Available Docker Images](#available-docker-images) +- [API Specification](#api-specification) +- [Usage](#usage) +- [Getting the Workflow JSON](#getting-the-workflow-json) +- [Further Documentation](#further-documentation) --- ## Quickstart -- ๐Ÿณ Choose one of the five available images for your serverless endpoint: - - `runpod/worker-comfyui:3.6.0-base`: doesn't contain anything, just a clean ComfyUI - - `runpod/worker-comfyui:3.6.0-flux1-schnell`: contains the checkpoint, text encoders and VAE for [FLUX.1 schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) - - `runpod/worker-comfyui:3.6.0-flux1-dev`: contains the checkpoint, text encoders and VAE for [FLUX.1 dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) - - `runpod/worker-comfyui:3.6.0-sdxl`: contains the checkpoint and VAE for [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) - - `runpod/worker-comfyui:3.6.0-sd3`: contains the checkpoint for [Stable Diffusion 3 medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium) -- โ„น๏ธ [Use the Docker image on RunPod](#use-the-docker-image-on-runpod) -- ๐Ÿงช Pick an [example workflow](./test_resources/workflows/) & [send it to your deployed endpoint](#interact-with-your-runpod-api) - -## Features - -- Run any [ComfyUI](https://github.com/comfyanonymous/ComfyUI) workflow to generate an image -- Provide input images as base64-encoded string -- The generated image is either: - - Returned as base64-encoded string (default) - - Uploaded to AWS S3 ([if AWS S3 is configured](#upload-image-to-aws-s3)) -- There are a few different Docker images to choose from: - - `runpod/worker-comfyui:3.6.0-flux1-schnell`: contains the [flux1-schnell.safetensors](https://huggingface.co/black-forest-labs/FLUX.1-schnell) checkpoint, the [clip_l.safetensors](https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/clip_l.safetensors) + [t5xxl_fp8_e4m3fn.safetensors](https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/t5xxl_fp8_e4m3fn.safetensors) text encoders and [ae.safetensors](https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/ae.safetensors) VAE for FLUX.1-schnell - - `runpod/worker-comfyui:3.6.0-flux1-dev`: contains the [flux1-dev.safetensors](https://huggingface.co/black-forest-labs/FLUX.1-dev) checkpoint, the [clip_l.safetensors](https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/clip_l.safetensors) + [t5xxl_fp8_e4m3fn.safetensors](https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/t5xxl_fp8_e4m3fn.safetensors) text encoders and [ae.safetensors](https://huggingface.co/black-forest-labs/FLUX.1-dev/resolve/main/ae.safetensors) VAE for FLUX.1-dev - - `runpod/worker-comfyui:3.6.0-sdxl`: contains the checkpoints and VAE for Stable Diffusion XL - - Checkpoint: [sd_xl_base_1.0.safetensors](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) - - VAEs: - - [sdxl_vae.safetensors](https://huggingface.co/stabilityai/sdxl-vae/) - - [sdxl-vae-fp16-fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/) - - `runpod/worker-comfyui:3.6.0-sd3`: contains the [sd3_medium_incl_clips_t5xxlfp8.safetensors](https://huggingface.co/stabilityai/stable-diffusion-3-medium) checkpoint for Stable Diffusion 3 medium -- [Bring your own models](#bring-your-own-models) -- Based on [Ubuntu + NVIDIA CUDA](https://hub.docker.com/r/nvidia/cuda) - -## Config - -| Environment Variable | Description | Default | -| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------- | -| `REFRESH_WORKER` | When you want to stop the worker after each finished job to have a clean state, see [official documentation](https://docs.runpod.io/docs/handler-additional-controls#refresh-worker). | `false` | -| `COMFY_POLLING_INTERVAL_MS` | Time to wait between poll attempts in milliseconds. | `250` | -| `COMFY_POLLING_MAX_RETRIES` | Maximum number of poll attempts. This should be increased the longer your workflow is running. | `500` | -| `SERVE_API_LOCALLY` | Enable local API server for development and testing. See [Local Testing](#local-testing) for more details. | disabled | - -### Upload image to AWS S3 - -This is only needed if you want to upload the generated picture to AWS S3. If you don't configure this, your image will be exported as base64-encoded string. - -- Create a bucket in region of your choice in AWS S3 (`BUCKET_ENDPOINT_URL`) -- Create an IAM that has access rights to AWS S3 -- Create an Access-Key (`BUCKET_ACCESS_KEY_ID` & `BUCKET_SECRET_ACCESS_KEY`) for that IAM -- Configure these environment variables for your RunPod worker: - -| Environment Variable | Description | Example | -| -------------------------- | ------------------------------------------------------- | -------------------------------------------- | -| `BUCKET_ENDPOINT_URL` | The endpoint URL of your S3 bucket. | `https://.s3..amazonaws.com` | -| `BUCKET_ACCESS_KEY_ID` | Your AWS access key ID for accessing the S3 bucket. | `AKIAIOSFODNN7EXAMPLE` | -| `BUCKET_SECRET_ACCESS_KEY` | Your AWS secret access key for accessing the S3 bucket. | `wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY` | - -## Use the Docker image on RunPod - -### Create your template (optional) - -- Create a [new template](https://runpod.io/console/serverless/user/templates) by clicking on `New Template` -- In the dialog, configure: - - Template Name: `worker-comfyui` (it can be anything you want) - - Template Type: serverless (change template type to "serverless") - - Container Image: `/:tag`, in this case: `runpod/worker-comfyui:3.6.0-sd3` (or `-base` for a clean image or `-sdxl` for Stable Diffusion XL or `-flex1-schnell` for FLUX.1 schnell) - - Container Registry Credentials: You can leave everything as it is, as this repo is public - - Container Disk: `20 GB` - - (optional) Environment Variables: [Configure S3](#upload-image-to-aws-s3) - - Note: You can also not configure it, the images will then stay in the worker. In order to have them stored permanently, [we have to add the network volume](https://github.com/runpod-workers/worker-comfyui/issues/1) -- Click on `Save Template` - -### Create your endpoint - -- Navigate to [`Serverless > Endpoints`](https://www.runpod.io/console/serverless/user/endpoints) and click on `New Endpoint` -- In the dialog, configure: - - - Endpoint Name: `comfy` - - Worker configuration: Select a GPU that can run the model you have chosen (see [GPU recommendations](#gpu-recommendations)) - - Active Workers: `0` (whatever makes sense for you) - - Max Workers: `3` (whatever makes sense for you) - - GPUs/Worker: `1` - - Idle Timeout: `5` (you can leave the default) - - Flash Boot: `enabled` (doesn't cost more, but provides faster boot of our worker, which is good) - - Select Template: `worker-comfyui` (or whatever name you gave your template) - - (optional) Advanced: If you are using a Network Volume, select it under `Select Network Volume`. Otherwise leave the defaults. - -- Click `deploy` -- Your endpoint will be created, you can click on it to see the dashboard - -### GPU recommendations - -| Model | Image | Minimum VRAM Required | Container Size | -| ------------------------- | --------------- | --------------------- | -------------- | -| Stable Diffusion XL | `sdxl` | 8 GB | 15 GB | -| Stable Diffusion 3 Medium | `sd3` | 5 GB | 20 GB | -| FLUX.1 Schnell | `flux1-schnell` | 24 GB | 30 GB | -| FLUX.1 dev | `flux1-dev` | 24 GB | 30 GB | - -## API specification - -The following describes which fields exist when doing requests to the API. We only describe the fields that are sent via `input` as those are needed by the worker itself. For a full list of fields, please take a look at the [official documentation](https://docs.runpod.io/docs/serverless-usage). - -### JSON Request Body +1. ๐Ÿณ Choose one of the [available Docker images](#available-docker-images) for your serverless endpoint (e.g., `runpod/worker-comfyui:-sd3`). +2. ๐Ÿ“„ Follow the [Deployment Guide](docs/deployment.md) to set up your RunPod template and endpoint. +3. โš™๏ธ Optionally configure the worker (e.g., for S3 upload) using environment variables - see the full [Configuration Guide](docs/configuration.md). +4. ๐Ÿงช Pick an example workflow from [`test_resources/workflows/`](./test_resources/workflows/) or [get your own](#getting-the-workflow-json). +5. ๐Ÿš€ Follow the [Usage](#usage) steps below to interact with your deployed endpoint. + +## Available Docker Images + +These images are available on Docker Hub under `runpod/worker-comfyui`: + +- **`runpod/worker-comfyui:-base`**: Clean ComfyUI install with no models. +- **`runpod/worker-comfyui:-flux1-schnell`**: Includes checkpoint, text encoders, and VAE for [FLUX.1 schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell). +- **`runpod/worker-comfyui:-flux1-dev`**: Includes checkpoint, text encoders, and VAE for [FLUX.1 dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). +- **`runpod/worker-comfyui:-sdxl`**: Includes checkpoint and VAEs for [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0). +- **`runpod/worker-comfyui:-sd3`**: Includes checkpoint for [Stable Diffusion 3 medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium). + +Replace `` with the current release tag, check the [releases page](https://github.com/runpod-workers/worker-comfyui/releases) for the latest version. + +## API Specification + +The worker exposes standard RunPod serverless endpoints (`/run`, `/runsync`, `/health`). By default, images are returned as base64 strings. You can configure the worker to upload images to an S3 bucket instead by setting specific environment variables (see [Configuration Guide](docs/configuration.md)). + +Use the `/runsync` endpoint for synchronous requests that wait for the job to complete and return the result directly. Use the `/run` endpoint for asynchronous requests that return immediately with a job ID; you'll need to poll the `/status` endpoint separately to get the result. + +### Input ```json { "input": { - "workflow": {}, + "workflow": { + "6": { + "inputs": { + "text": "a ball on the table", + "clip": ["30", 1] + }, + "class_type": "CLIPTextEncode", + "_meta": { + "title": "CLIP Text Encode (Positive Prompt)" + } + } + }, "images": [ { - "name": "example_image_name.png", - "image": "base64_encoded_string" + "name": "input_image_1.png", + "image": "..." } ] } } ``` -### Fields - -| Field Path | Type | Required | Description | -| ---------------- | ------ | -------- | ----------------------------------------------------------------------------------------------------------------------------------------- | -| `input` | Object | Yes | The top-level object containing the request data. | -| `input.workflow` | Object | Yes | Contains the ComfyUI workflow configuration. | -| `input.images` | Array | No | An array of images. Each image will be added into the "input"-folder of ComfyUI and can then be used in the workflow by using it's `name` | - -#### "input.images" - -An array of images, where each image should have a different name. - -๐Ÿšจ The request body for a RunPod endpoint is 10 MB for `/run` and 20 MB for `/runsync`, so make sure that your input images are not super huge as this will be blocked by RunPod otherwise, see the [official documentation](https://docs.runpod.io/docs/serverless-endpoint-urls) - -| Field Name | Type | Required | Description | -| ---------- | ------ | -------- | ---------------------------------------------------------------------------------------- | -| `name` | String | Yes | The name of the image. Please use the same name in your workflow to reference the image. | -| `image` | String | Yes | A base64 encoded string of the image. | - -## Interact with your RunPod API - -1. **Generate an API Key**: - - - In the [User Settings](https://www.runpod.io/console/serverless/user/settings), click on `API Keys` and then on the `API Key` button. - - Save the generated key somewhere safe, as you will not be able to see it again when you navigate away from the page. - -2. **Use the API Key**: - - - Use cURL or any other tool to access the API using the API key and your Endpoint ID: - - Replace `` with your key. - -3. **Use your Endpoint**: - - Replace `` with the [ID of the endpoint](https://www.runpod.io/console/serverless). (You can find the endpoint ID by clicking on your endpoint; it is written underneath the name of the endpoint at the top and also part of the URLs shown at the bottom of the first box.) - -![How to find the EndpointID](./assets/my-endpoint-with-endpointID.png) +The following tables describe the fields within the `input` object: -### Health status +| Field Path | Type | Required | Description | +| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------------------------------------------ | +| `input` | Object | Yes | Top-level object containing request data. | +| `input.workflow` | Object | Yes | The ComfyUI workflow exported in the [required format](#getting-the-workflow-json). | +| `input.images` | Array | No | Optional array of input images. Each image is uploaded to ComfyUI's `input` directory and can be referenced by its `name` in the workflow. | -```bash -curl -H "Authorization: Bearer " https://api.runpod.ai/v2//health -``` - -### Generate an image +#### `input.images` Object -You can either create a new job async by using `/run` or a sync by using `/runsync`. The example here is using a sync job and waits until the response is delivered. +Each object within the `input.images` array must contain: -The API expects a [JSON in this form](#json-request-body), where `workflow` is the [workflow from ComfyUI, exported as JSON](#how-to-get-the-workflow-from-comfyui) and `images` is optional. +| Field Name | Type | Required | Description | +| ---------- | ------ | -------- | --------------------------------------------------------------------------------------------------------------------------------- | +| `name` | String | Yes | Filename used to reference the image in the workflow (e.g., via a "Load Image" node). Must be unique within the array. | +| `image` | String | Yes | Base64 encoded string of the image. A data URI prefix (e.g., `data:image/png;base64,`) is optional and will be handled correctly. | -Please also take a look at the [test_input.json](./test_input.json) to see how the API input should look like. +> [!NOTE] > **Size Limits:** RunPod endpoints have request size limits (e.g., 10MB for `/run`, 20MB for `/runsync`). Large base64 input images can exceed these limits. See [RunPod Docs](https://docs.runpod.io/docs/serverless-endpoint-urls). -#### Example request for SDXL with cURL - -```bash -curl -X POST -H "Authorization: Bearer " -H "Content-Type: application/json" -d '{"input":{"workflow":{"3":{"inputs":{"seed":1337,"steps":20,"cfg":8,"sampler_name":"euler","scheduler":"normal","denoise":1,"model":["4",0],"positive":["6",0],"negative":["7",0],"latent_image":["5",0]},"class_type":"KSampler"},"4":{"inputs":{"ckpt_name":"sd_xl_base_1.0.safetensors"},"class_type":"CheckpointLoaderSimple"},"5":{"inputs":{"width":512,"height":512,"batch_size":1},"class_type":"EmptyLatentImage"},"6":{"inputs":{"text":"beautiful scenery nature glass bottle landscape, purple galaxy bottle,","clip":["4",1]},"class_type":"CLIPTextEncode"},"7":{"inputs":{"text":"text, watermark","clip":["4",1]},"class_type":"CLIPTextEncode"},"8":{"inputs":{"samples":["3",0],"vae":["4",2]},"class_type":"VAEDecode"},"9":{"inputs":{"filename_prefix":"ComfyUI","images":["8",0]},"class_type":"SaveImage"}}}}' https://api.runpod.ai/v2//runsync -``` +### Output -Example response with AWS S3 bucket configuration +> [!WARNING] > **Breaking Change in Output Format (5.0.0+)** +> Versions `< 5.0.0` returned the primary image data (S3 URL or base64 string) directly within an `output.message` field. +> Starting with `5.0.0`, the output format has changed significantly, see below ```json { - "delayTime": 2188, - "executionTime": 2297, - "id": "sync-c0cd1eb2-068f-4ecf-a99a-55770fc77391-e1", + "id": "sync-uuid-string", + "status": "COMPLETED", "output": { - "message": "https://bucket.s3.region.amazonaws.com/10-23/sync-c0cd1eb2-068f-4ecf-a99a-55770fc77391-e1/c67ad621.png", - "status": "success" + "images": [ + { + "filename": "ComfyUI_00001_.png", + "type": "base64", + "data": "iVBORw0KGgoAAAANSUhEUg..." + } + ] }, - "status": "COMPLETED" -} -``` - -Example response as base64-encoded image - -```json -{ - "delayTime": 2188, - "executionTime": 2297, - "id": "sync-c0cd1eb2-068f-4ecf-a99a-55770fc77391-e1", - "output": { "message": "base64encodedimage", "status": "success" }, - "status": "COMPLETED" + "delayTime": 123, + "executionTime": 4567 } ``` -## How to get the workflow from ComfyUI? - -- Open ComfyUI in the browser -- Open the `Settings` (gear icon in the top right of the menu) -- In the dialog that appears configure: - - `Enable Dev mode Options`: enable - - Close the `Settings` -- In the menu, click on the `Save (API Format)` button, which will download a file named `workflow_api.json` - -You can now take the content of this file and put it into your `workflow` when interacting with the API. - -## Bring Your Own Models and Nodes - -### Network Volume - -Using a Network Volume allows you to store and access custom models: - -1. **Create a Network Volume**: - - Follow the [RunPod Network Volumes guide](https://docs.runpod.io/pods/storage/create-network-volumes) to create a volume. -2. **Populate the Volume**: - - - Create a temporary GPU instance: - - Navigate to `Manage > Storage`, click `Deploy` under the volume, and deploy any GPU or CPU instance. - - Navigate to `Manage > Pods`. Under the new pod, click `Connect` to open a shell (either via Jupyter notebook or SSH). - - Populate the volume with your models: - ```bash - cd /workspace - for i in checkpoints clip clip_vision configs controlnet embeddings loras upscale_models vae; do mkdir -p models/$i; done - wget -O models/checkpoints/sd_xl_turbo_1.0_fp16.safetensors https://huggingface.co/stabilityai/sdxl-turbo/resolve/main/sd_xl_turbo_1.0_fp16.safetensors - ``` - -3. **Delete the Temporary GPU Instance**: - - - Once populated, [terminate the temporary GPU instance](https://docs.runpod.io/docs/pods#terminating-a-pod). - -4. **Configure Your Endpoint**: - - Use the Network Volume in your endpoint configuration: - - Either create a new endpoint or update an existing one. - - In the endpoint configuration, under `Advanced > Select Network Volume`, select your Network Volume. - -Note: The folders in the Network Volume are automatically available to ComfyUI when the network volume is configured and attached. - -### Custom Docker Image - -If you prefer to include your models and custom nodes directly in the Docker image, follow these steps: - -1. **Fork the Repository**: - - Fork this repository to your own GitHub account. - -#### Adding Custom Models - -To include additional models in your Docker image, edit the `Dockerfile` and add the download commands: - -```Dockerfile -RUN wget -O models/checkpoints/sd_xl_base_1.0.safetensors https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors -``` - -#### Adding Custom Nodes - -To include custom nodes in your Docker image: - -1. [Export a snapshot from ComfyUI Manager](https://github.com/ltdrdata/ComfyUI-Manager?tab=readme-ov-file#snapshot-manager) that includes all your desired custom nodes - - 1. Open "Manager > Snapshot Manager" - 2. Create a new snapshot by clicking on "Save snapshot" - 3. Get the `*_snapshot.json` from your ComfyUI: `ComfyUI/custom_nodes/ComfyUI-Manager/snapshots` - -2. Save the snapshot file in the root directory of the project -3. The snapshot will be automatically restored during the Docker build process, see [Building the Image](#building-the-image) - -> [!NOTE] -> -> - Some custom nodes may download additional models during installation, which can significantly increase the image size -> - Having many custom nodes may increase ComfyUI's initialization time - -#### Building the Image - -Build your customized Docker image locally: +| Field Path | Type | Required | Description | +| --------------- | ---------------- | -------- | ----------------------------------------------------------------------------------------------------------- | +| `output` | Object | Yes | Top-level object containing the results of the job execution. | +| `output.images` | Array of Objects | No | Present if the workflow generated images. Contains a list of objects, each representing one output image. | +| `output.errors` | Array of Strings | No | Present if non-fatal errors or warnings occurred during processing (e.g., S3 upload failure, missing data). | -```bash -# Build the base image -docker build -t /worker-comfyui:dev-base --target base --platform linux/amd64 . - -# Build the SDXL image -docker build --build-arg MODEL_TYPE=sdxl -t /worker-comfyui:dev-sdxl --platform linux/amd64 . - -# Build the SD3 image -docker build --build-arg MODEL_TYPE=sd3 --build-arg HUGGINGFACE_ACCESS_TOKEN= -t /worker-comfyui:dev-sd3 --platform linux/amd64 . -``` +#### `output.images` -> [!NOTE] -> Ensure to specify `--platform linux/amd64` to avoid errors on RunPod, see [issue #13](https://github.com/runpod-workers/worker-comfyui/issues/13) - -## Local testing - -Both tests will use the data from [test_input.json](./test_input.json), so make your changes in there to test this properly. - -### Setup - -1. Make sure you have Python >= 3.10 -2. Create a virtual environment: - ```bash - python -m venv venv - ``` -3. Activate the virtual environment: - - **Windows**: - ```bash - .\venv\Scripts\activate - ``` - - **Mac / Linux**: - ```bash - source ./venv/bin/activate - ``` -4. Install the dependencies: - ```bash - pip install -r requirements.txt - ``` - -#### Setup for Windows - -1. Install WSL2 and a Linux distro (like Ubuntu) following [this guide](https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-11-with-gui-support#1-overview). You can skip the "Install and use a GUI package" part. -2. After installing Ubuntu, open the terminal and log in: - ```bash - wsl -d Ubuntu - ``` -3. Update the packages: - ```bash - sudo apt update - ``` -4. Install Docker in Ubuntu: - - Follow the [official Docker installation guide](https://docs.docker.com/engine/install/ubuntu/). - - Install docker-compose: - ```bash - sudo apt-get install docker-compose - ``` - - Install the NVIDIA Toolkit in Ubuntu: - Follow [this guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#configuring-docker) and create the `nvidia` runtime. -5. Enable GPU acceleration on Ubuntu on WSL2: - Follow [this guide](https://canonical-ubuntu-wsl.readthedocs-hosted.com/en/latest/tutorials/gpu-cuda/). - - If you already have your GPU driver installed on Windows, you can skip the "Install the appropriate Windows vGPU driver for WSL" step. -6. Add your user to the `docker` group to use Docker without `sudo`: - ```bash - sudo usermod -aG docker $USER - ``` - -Once these steps are completed, you can either run the Docker image directly on Windows using Docker Desktop or switch to Ubuntu in the terminal to run the Docker image via WSL +Each object in the `output.images` array has the following structure: -```bash -wsl -d Ubuntu -``` +| Field Name | Type | Description | +| ---------- | ------ | ----------------------------------------------------------------------------------------------- | +| `filename` | String | The original filename assigned by ComfyUI during generation. | +| `type` | String | Indicates the format of the data. Either `"base64"` or `"s3_url"` (if S3 upload is configured). | +| `data` | String | Contains either the base64 encoded image string or the S3 URL for the uploaded image file. | > [!NOTE] +> The `output.images` field provides a list of all generated images (excluding temporary ones). > -> - Windows: Accessing the API or ComfyUI might not work when you run the Docker Image via WSL, so it is recommended to run the Docker Image directly on Windows using Docker Desktop +> - If S3 upload is **not** configured (default), `type` will be `"base64"` and `data` will contain the base64 encoded image string. +> - If S3 upload **is** configured, `type` will be `"s3_url"` and `data` will contain the S3 URL. See the [Configuration Guide](docs/configuration.md#example-s3-response) for an S3 example response. +> - Clients interacting with the API need to handle this list-based structure under `output.images`. -### Testing the RunPod handler +## Usage -- Run all tests: `python -m unittest discover` -- If you want to run a specific test: `python -m unittest tests.test_rp_handler.TestRunpodWorkerComfy.test_bucket_endpoint_not_configured` +To interact with your deployed RunPod endpoint: -You can also start the handler itself to have the local server running: `python src/rp_handler.py` -To get this to work you will also need to start "ComfyUI", otherwise the handler will not work. +1. **Get API Key:** Generate a key in RunPod [User Settings](https://www.runpod.io/console/serverless/user/settings) (`API Keys` section). +2. **Get Endpoint ID:** Find your endpoint ID on the [Serverless Endpoints](https://www.runpod.io/console/serverless/user/endpoints) page. + ![How to find the EndpointID](./assets/my-endpoint-with-endpointID.png) -### Local API +### Generate Image (Sync Example) -For enhanced local development, you can start an API server that simulates the RunPod worker environment. This feature is particularly useful for debugging and testing your integrations locally. - -Set the `SERVE_API_LOCALLY` environment variable to `true` to activate the local API server when running your Docker container. This is already the default value in the `docker-compose.yml`, so you can get it running by executing: +Send a workflow to the `/runsync` endpoint (waits for completion). Replace `` and ``. The `-d` value should contain the [JSON input described above](#input). ```bash -docker-compose up +curl -X POST \ + -H "Authorization: Bearer " \ + -H "Content-Type: application/json" \ + -d '{"input":{"workflow":{... your workflow JSON ...}}}' \ + https://api.runpod.ai/v2//runsync ``` -> [!NOTE] -> -> - This will only work on computer with an NVIDIA GPU for now, as it requires CUDA. Please open an issue if you want to use it on a CPU / Mac - -#### Access the local Worker API - -- With the local API server running, it's accessible at: [localhost:8000](http://localhost:8000) -- When you open this in your browser, you can also see the API documentation and can interact with the API directly - -> [!NOTE] -> -> - Windows: Accessing the API or ComfyUI might not work when you run the Docker Image via WSL, so it is recommended to run the Docker Image directly on Windows using Docker Desktop - -#### Access local ComfyUI - -- With the local API server running, you can access ComfyUI at: [localhost:8188](http://localhost:8188) - -> [!NOTE] -> -> - Windows: Accessing the API or ComfyUI might not work when you run the Docker Image via WSL, so it is recommended to run the Docker Image directly on Windows using Docker Desktop - -## Automatically deploy to Docker hub with GitHub Actions - -The repo contains two workflows that publish the image to Docker hub using GitHub Actions: - -- [dev.yml](.github/workflows/dev.yml): Creates the image and pushes it to Docker hub with the `dev` tag on every push to the `main` branch -- [release.yml](.github/workflows/release.yml): Creates the image and pushes it to Docker hub with the `latest` and the release tag. It will only be triggered when you create a release on GitHub +You can also use the `/run` endpoint for asynchronous jobs and then poll the `/status` to see when the job is done. Or you [add a `webhook` into your request](https://docs.runpod.io/serverless/endpoints/send-requests#webhook-notifications) to be notified when the job is done. -If you want to use this, you should add these **secrets** to your repository: +Refer to [`test_input.json`](./test_input.json) for a complete input example. -| Configuration Variable | Description | Example Value | -| -------------------------- | ----------------------------------------- | ------------------- | -| `DOCKERHUB_USERNAME` | Your Docker Hub username. | `your-username` | -| `DOCKERHUB_TOKEN` | Your Docker Hub token for authentication. | `your-token` | -| `HUGGINGFACE_ACCESS_TOKEN` | Your READ access token from Hugging Face | `your-access-token` | +## Getting the Workflow JSON -And also make sure to add these **variables** to your repository: +To get the correct `workflow` JSON for the API: -| Variable Name | Description | Example Value | -| ---------------- | ------------------------------------------------------------ | ---------------- | -| `DOCKERHUB_REPO` | The repository on Docker Hub where the image will be pushed. | `runpod` | -| `DOCKERHUB_IMG` | The name of the image to be pushed to Docker Hub. | `worker-comfyui` | +1. Open ComfyUI in your browser. +2. In the top navigation, select `Workflow > Export (API)` +3. A `workflow.json` file will be downloaded. Use the content of this file as the value for the `input.workflow` field in your API requests. -## Acknowledgments +## Further Documentation -- Thanks to [Blibla](https://github.com/blib-la) for providing the original repo (previously under blib-la/runpod-worker-comfy) to RunPod, to continue the open-source development of this worker -- Thanks to [all contributors](https://github.com/runpod-workers/worker-comfyui/graphs/contributors) for your awesome work -- Thanks to [Justin Merrell](https://github.com/justinmerrell) from RunPod for [worker-1111](https://github.com/runpod-workers/worker-a1111), which was used to get inspired on how to create this worker -- Thanks to [Ashley Kleynhans](https://github.com/ashleykleynhans) for [runpod-worker-a1111](https://github.com/ashleykleynhans/runpod-worker-a1111), which was used to get inspired on how to create this worker -- Thanks to [comfyanonymous](https://github.com/comfyanonymous) for creating [ComfyUI](https://github.com/comfyanonymous/ComfyUI), which provides such an awesome API to interact with Stable Diffusion and beyond +- **[Deployment Guide](docs/deployment.md):** Detailed steps for deploying on RunPod. +- **[Configuration Guide](docs/configuration.md):** Full list of environment variables (including S3 setup). +- **[Customization Guide](docs/customization.md):** Adding custom models and nodes (Network Volumes, Docker builds). +- **[Development Guide](docs/development.md):** Setting up a local environment for development & testing +- **[CI/CD Guide](docs/ci-cd.md):** Information about the automated Docker build and publish workflows. +- **[Acknowledgments](docs/acknowledgments.md):** Credits and thanks diff --git a/docker-bake.hcl b/docker-bake.hcl index 588a2128..3bb78e2c 100644 --- a/docker-bake.hcl +++ b/docker-bake.hcl @@ -15,7 +15,8 @@ variable "HUGGINGFACE_ACCESS_TOKEN" { } group "default" { - targets = ["base", "sdxl", "sd3", "flux1-schnell", "flux1-dev"] + // ["base", "sdxl", "sd3", "flux1-schnell", "flux1-dev"] + targets = ["base"] } target "base" { @@ -73,3 +74,12 @@ target "flux1-dev" { inherits = ["base"] } +target "flux1-dev-fp8" { + context = "." + dockerfile = "Dockerfile" + target = "final" + # No args needed, will use default MODEL_TYPE=flux1-dev-fp8 + tags = ["${DOCKERHUB_REPO}/${DOCKERHUB_IMG}:${RELEASE_VERSION}-flux1-dev-fp8"] + inherits = ["base"] +} + diff --git a/docker-compose.yml b/docker-compose.yml index 74820f45..b9f2168f 100644 --- a/docker-compose.yml +++ b/docker-compose.yml @@ -1,6 +1,7 @@ services: comfyui-worker: - image: runpod/worker-comfyui:dev + image: worker-comfyui:dev + pull_policy: never deploy: resources: reservations: diff --git a/docs/acknowledgments.md b/docs/acknowledgments.md new file mode 100644 index 00000000..0112281a --- /dev/null +++ b/docs/acknowledgments.md @@ -0,0 +1,7 @@ +# Acknowledgments + +- Thanks to [Blibla](https://github.com/blib-la) for providing the original repo (previously under `blib-la/runpod-worker-comfy`) to RunPod, to continue the open-source development of this worker. +- Thanks to [all contributors](https://github.com/runpod-workers/worker-comfyui/graphs/contributors) for your awesome work. +- Thanks to [Justin Merrell](https://github.com/justinmerrell) from RunPod for [worker-1111](https://github.com/runpod-workers/worker-a1111), which was used to get inspired on how to create this worker. +- Thanks to [Ashley Kleynhans](https://github.com/ashleykleynhans) for [runpod-worker-a1111](https://github.com/ashleykleynhans/runpod-worker-a1111), which was used to get inspired on how to create this worker. +- Thanks to [comfyanonymous](https://github.com/comfyanonymous) for creating [ComfyUI](https://github.com/comfyanonymous/ComfyUI), which provides such an awesome API to interact with Stable Diffusion and beyond. diff --git a/docs/ci-cd.md b/docs/ci-cd.md new file mode 100644 index 00000000..9bde6e66 --- /dev/null +++ b/docs/ci-cd.md @@ -0,0 +1,31 @@ +# CI/CD + +This project includes GitHub Actions workflows to automatically build and deploy Docker images to Docker Hub. + +## Automatic Deployment to Docker Hub with GitHub Actions + +The repository contains two workflows located in the `.github/workflows` directory: + +- [`dev.yml`](../.github/workflows/dev.yml): Creates the images (base, sdxl, sd3, flux variants) and pushes them to Docker Hub tagged as `:dev` on every push to the `main` branch. +- [`release.yml`](../.github/workflows/release.yml): Creates the images and pushes them to Docker Hub tagged as `:latest` and `:` (e.g., `worker-comfyui:3.7.0`). This workflow is triggered only when a new release is created on GitHub. + +### Configuration for Your Fork + +If you have forked this repository and want to use these actions to publish images to your own Docker Hub account, you need to configure the following in your GitHub repository settings: + +1. **Secrets** (`Settings > Secrets and variables > Actions > New repository secret`): + + | Secret Name | Description | Example Value | + | -------------------------- | -------------------------------------------------------------------------- | ------------------- | + | `DOCKERHUB_USERNAME` | Your Docker Hub username. | `your-dockerhub-id` | + | `DOCKERHUB_TOKEN` | Your Docker Hub access token with read/write permissions. | `dckr_pat_...` | + | `HUGGINGFACE_ACCESS_TOKEN` | Your READ access token from Hugging Face (required only for building SD3). | `hf_...` | + +2. **Variables** (`Settings > Secrets and variables > Actions > New repository variable`): + + | Variable Name | Description | Example Value | + | ---------------- | ---------------------------------------------------------------------------- | -------------------------- | + | `DOCKERHUB_REPO` | The target repository (namespace) on Docker Hub where images will be pushed. | `your-dockerhub-id` | + | `DOCKERHUB_IMG` | The base name for the image to be pushed to Docker Hub. | `my-custom-worker-comfyui` | + +With these secrets and variables configured, the actions will push the built images (e.g., `your-dockerhub-id/my-custom-worker-comfyui:dev`, `your-dockerhub-id/my-custom-worker-comfyui:1.0.0`, `your-dockerhub-id/my-custom-worker-comfyui:latest`) to your Docker Hub account when triggered. diff --git a/docs/configuration.md b/docs/configuration.md new file mode 100644 index 00000000..a0e2d932 --- /dev/null +++ b/docs/configuration.md @@ -0,0 +1,53 @@ +# Configuration + +This document outlines the environment variables available for configuring the `worker-comfyui`. + +## General Configuration + +| Environment Variable | Description | Default | +| -------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- | +| `REFRESH_WORKER` | When `true`, the worker pod will stop after each completed job to ensure a clean state for the next job. See the [RunPod documentation](https://docs.runpod.io/docs/handler-additional-controls#refresh-worker) for details. | `false` | +| `SERVE_API_LOCALLY` | When `true`, enables a local HTTP server simulating the RunPod environment for development and testing. See the [Development Guide](development.md#local-api) for more details. | `false` | + +## AWS S3 Upload Configuration + +Configure these variables **only** if you want the worker to upload generated images directly to an AWS S3 bucket. If these are not set, images will be returned as base64-encoded strings in the API response. + +- **Prerequisites:** + - An AWS S3 bucket in your desired region. + - An AWS IAM user with programmatic access (Access Key ID and Secret Access Key). + - Permissions attached to the IAM user allowing `s3:PutObject` (and potentially `s3:PutObjectAcl` if you need specific ACLs) on the target bucket. + +| Environment Variable | Description | Example | +| -------------------------- | --------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------- | +| `BUCKET_ENDPOINT_URL` | The full endpoint URL of your S3 bucket. **Must be set to enable S3 upload.** | `https://.s3..amazonaws.com` | +| `BUCKET_ACCESS_KEY_ID` | Your AWS access key ID associated with the IAM user that has write permissions to the bucket. Required if `BUCKET_ENDPOINT_URL` is set. | `AKIAIOSFODNN7EXAMPLE` | +| `BUCKET_SECRET_ACCESS_KEY` | Your AWS secret access key associated with the IAM user. Required if `BUCKET_ENDPOINT_URL` is set. | `wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY` | + +**Note:** Upload uses the `runpod` Python library helper `rp_upload.upload_image`, which handles creating a unique path within the bucket based on the `job_id`. + +### Example S3 Response + +If the S3 environment variables (`BUCKET_ENDPOINT_URL`, `BUCKET_ACCESS_KEY_ID`, `BUCKET_SECRET_ACCESS_KEY`) are correctly configured, a successful job response will look similar to this: + +```json +{ + "id": "sync-uuid-string", + "status": "COMPLETED", + "output": { + "images": [ + { + "filename": "ComfyUI_00001_.png", + "type": "s3_url", + "data": "https://your-bucket-name.s3.your-region.amazonaws.com/sync-uuid-string/ComfyUI_00001_.png" + } + // Additional images generated by the workflow would appear here + ] + // The "errors" key might be present here if non-fatal issues occurred + }, + "delayTime": 123, + "executionTime": 4567 +} +``` + +The `data` field contains the presigned URL to the uploaded image file in your S3 bucket. The path usually includes the job ID. diff --git a/docs/conventions.md b/docs/conventions.md index 307d0cb2..18f4af3a 100644 --- a/docs/conventions.md +++ b/docs/conventions.md @@ -2,7 +2,7 @@ This project (`worker-comfyui`) provides a way to run [ComfyUI](https://github.com/comfyanonymous/ComfyUI) as a serverless API worker on the [RunPod](https://www.runpod.io/) platform. Its main purpose is to allow users to submit ComfyUI image generation workflows via a simple API call and receive the resulting images, either directly as base64-encoded strings or via an upload to an AWS S3 bucket. -It packages ComfyUI into Docker images, manages job handling via the `runpod` SDK, and facilitates configuration through environment variables. +It packages ComfyUI into Docker images, manages job handling via the `runpod` SDK, uses websockets for efficient communication with ComfyUI, and facilitates configuration through environment variables. # Project Conventions and Rules @@ -10,7 +10,7 @@ This document outlines the key operational and structural conventions for the `w ## 1. Configuration -- **Environment Variables:** All external configurations (e.g., AWS S3 credentials, RunPod behavior modifications like `REFRESH_WORKER`, ComfyUI polling settings) **must** be managed via environment variables. +- **Environment Variables:** All external configurations (e.g., AWS S3 credentials, RunPod behavior modifications like `REFRESH_WORKER`) **must** be managed via environment variables. - Refer to the main `README.md` sections "Config" and "Upload image to AWS S3" for details on available variables. ## 2. Docker Usage @@ -26,8 +26,10 @@ This document outlines the key operational and structural conventions for the `w ## 3. API Interaction - **Input Structure:** API calls to the `/run` or `/runsync` endpoints must adhere to the JSON structure specified in the `README.md` ("API specification"). The primary key is `input`, containing `workflow` (mandatory object) and `images` (optional array). -- **Image Encoding:** Input images provided in the `input.images` array must be base64 encoded strings. +- **Image Encoding:** Input images provided in the `input.images` array must be base64 encoded strings (optionally including a `data:[];base64,` prefix). - **Workflow Format:** The `input.workflow` object should contain the JSON exported from ComfyUI using the "Save (API Format)" option (requires enabling "Dev mode Options" in ComfyUI settings). +- **Output Structure:** Successful responses contain an `output.images` field, which is a **list of dictionaries**. Each dictionary includes `filename` (string), `type` (`"s3_url"` or `"base64"`), and `data` (string containing the URL or base64 data). Refer to the `README.md` API examples for the exact structure. +- **Internal Communication:** Job status monitoring uses the ComfyUI websocket API instead of HTTP polling for efficiency. ## 4. Testing @@ -36,7 +38,7 @@ This document outlines the key operational and structural conventions for the `w ## 5. Dependencies -- **Python:** Manage Python dependencies using `pip` and the `requirements.txt` file. Keep this file up-to-date. +- **Python:** Manage Python dependencies using `pip` (or `uv`) and the `requirements.txt` file. Keep this file up-to-date. ## 6. Code Style (General Guidance) diff --git a/docs/customization.md b/docs/customization.md new file mode 100644 index 00000000..e2604e5a --- /dev/null +++ b/docs/customization.md @@ -0,0 +1,89 @@ +# Customization + +This guide covers methods for adding your own models, custom nodes, and static input files into a custom `worker-comfyui`. + +There are two primary methods for customizing your setup: + +1. **Custom Dockerfile (recommended):** Create your own `Dockerfile` starting `FROM` one of the official `worker-comfyui` base images. This allows you to bake specific custom nodes, models, and input files directly into your image using `comfy-cli` commands. **This method does not require forking the `worker-comfyui` repository.** +2. **Network Volume:** Store models on a persistent network volume attached to your RunPod endpoint. This is useful if you frequently change models or have very large models you don't want to include in the image build process. + +## Method 1: Custom Dockerfile + +This is the most flexible and recommended approach for creating reproducible, customized worker environments. + +1. **Create a `Dockerfile`:** In your own project directory, create a file named `Dockerfile`. +2. **Start with a Base Image:** Begin your `Dockerfile` by referencing one of the official base images. Using the `-base` tag is recommended as it provides a clean ComfyUI install with necessary tools like `comfy-cli` but without pre-packaged models. + ```Dockerfile + # start from a clean base image (replace with the desired release) + FROM runpod/worker-comfyui:-base + ``` +3. **Install Custom Nodes:** Use the `comfy node install` command to add custom nodes by their repository name or URL. You can list multiple nodes. + ```Dockerfile + # install custom nodes using comfy-cli + RUN comfy node install comfyui-kjnodes comfyui-ic-light + ``` +4. **Download Models:** Use the `comfy model download` command to fetch models and place them in the correct ComfyUI directories. + + ```Dockerfile + # download models using comfy-cli + RUN comfy model download --url https://huggingface.co/KamCastle/jugg/resolve/main/juggernaut_reborn.safetensors --relative-path models/checkpoints --filename juggernaut_reborn.safetensors + ``` + + > [!INFO] + > Ensure you use the correct `--relative-path` corresponding to ComfyUI's model directory structure (starting with `models/`): + > + > checkpoints, clip, clip_vision, configs, controlnet, diffusers, embeddings, gligen, hypernetworks, loras, style_models, unet, upscale_models, vae, vae_approx, animatediff_models, animatediff_motion_lora, ipadapter, photomaker, sams, insightface, facerestore_models, facedetection, mmdets, instantid + +5. **Add Static Input Files (Optional):** If your workflows consistently require specific input images, masks, videos, etc., you can copy them directly into the image. - Create an `input/` directory in the same folder as your `Dockerfile`. - Place your static files inside this `input/` directory. - Add a `COPY` command to your `Dockerfile`: + `Dockerfile + # Copy local static input files into the ComfyUI input directory + COPY input/ /comfyui/input/ + `These files can then be referenced in your workflow using a "Load Image" (or similar) node pointing to the filename (e.g.,`my_static_image.png`). + +Once you have created your custom `Dockerfile`, refer to the [Deployment Guide](deployment.md#deploying-custom-setups) for instructions on how to build, push and deploy your custom image to RunPod. + +### Complete Custom `Dockerfile` Example + +```Dockerfile +# start from a clean base image (replace with the desired release) +FROM runpod/worker-comfyui:5.0.0-base + +# install custom nodes using comfy-cli +RUN comfy node install comfyui-kjnodes comfyui-ic-light comfyui_ipadapter_plus comfyui_essentials ComfyUI-Hangover-Nodes + +# download models using comfy-cli +# the "--filename" is what you use in your ComfyUI workflow +RUN comfy model download --url https://huggingface.co/KamCastle/jugg/resolve/main/juggernaut_reborn.safetensors --relative-path models/checkpoints --filename juggernaut_reborn.safetensors +RUN comfy model download --url https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter-plus_sd15.bin --relative-path models/ipadapter --filename ip-adapter-plus_sd15.bin +RUN comfy model download --url https://huggingface.co/shiertier/clip_vision/resolve/main/SD15/model.safetensors --relative-path models/clip_vision --filename models.safetensors +RUN comfy model download --url https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fcon.safetensors --relative-path models/diffusion_models --filename iclight_sd15_fcon.safetensors + +# Copy local static input files into the ComfyUI input directory (delete if not needed) +# Assumes you have an 'input' folder next to your Dockerfile +COPY input/ /comfyui/input/ +``` + +## Method 2: Network Volume + +Using a Network Volume is primarily useful if you want to manage **models** separately from your worker image, especially if they are large or change often. + +1. **Create a Network Volume**: + - Follow the [RunPod Network Volumes guide](https://docs.runpod.io/pods/storage/create-network-volumes) to create a volume in the same region as your endpoint. +2. **Populate the Volume with Models**: + - Use one of the methods described in the RunPod guide (e.g., temporary Pod + `wget`, direct upload) to place your model files into the correct ComfyUI directory structure **within the volume**. The root of the volume corresponds to `/workspace` inside the container. + ```bash + # Example structure inside the Network Volume: + # /models/checkpoints/your_model.safetensors + # /models/loras/your_lora.pt + # /models/vae/your_vae.safetensors + ``` + - **Important:** Ensure models are placed in the correct subdirectories (e.g., checkpoints in `models/checkpoints`, LoRAs in `models/loras`). +3. **Configure Your Endpoint**: + - Use the Network Volume in your endpoint configuration: + - Either create a new endpoint or update an existing one (see [Deployment Guide](deployment.md)). + - In the endpoint configuration, under `Advanced > Select Network Volume`, select your Network Volume. + +**Note:** + +- When a Network Volume is correctly attached, ComfyUI running inside the worker container will automatically detect and load models from the standard directories (`/workspace/models/...`) within that volume. +- This method is **not suitable for installing custom nodes**; use the Custom Dockerfile method for that. diff --git a/docs/deployment.md b/docs/deployment.md new file mode 100644 index 00000000..28b59e38 --- /dev/null +++ b/docs/deployment.md @@ -0,0 +1,103 @@ +# Deployment + +This guide explains how to deploy the `worker-comfyui` as a serverless endpoint on RunPod, covering both pre-built official images and custom-built images. + +## Deploying Pre-Built Official Images + +This is the simplest method if the official images meet your needs. + +### Create your template (optional) + +- Create a [new template](https://runpod.io/console/serverless/user/templates) by clicking on `New Template` +- In the dialog, configure: + - Template Name: `worker-comfyui` (or your preferred name) + - Template Type: serverless (change template type to "serverless") + - Container Image: Use one of the official tags, e.g., `runpod/worker-comfyui:-sd3`. (Refer to the main [README.md](../README.md#available-docker-images) for available image tags and the current version). + - Container Registry Credentials: Leave as default (images are public). + - Container Disk: Adjust based on the chosen image tag, see [GPU Recommendations](#gpu-recommendations). + - (optional) Environment Variables: Configure S3 or other settings (see [Configuration Guide](configuration.md)). + - Note: If you don't configure S3, images are returned as base64. For persistent storage across jobs without S3, consider using a [Network Volume](customization.md#method-2-network-volume-alternative-for-models). +- Click on `Save Template` + +### Create your endpoint + +- Navigate to [`Serverless > Endpoints`](https://www.runpod.io/console/serverless/user/endpoints) and click on `New Endpoint` +- In the dialog, configure: + + - Endpoint Name: `comfy` (or your preferred name) + - Worker configuration: Select a GPU that can run the model included in your chosen image (see [GPU recommendations](#gpu-recommendations)). + - Active Workers: `0` (Scale as needed based on expected load). + - Max Workers: `3` (Set a limit based on your budget and scaling needs). + - GPUs/Worker: `1` + - Idle Timeout: `5` (Default is usually fine, adjust if needed). + - Flash Boot: `enabled` (Recommended for faster worker startup). + - Select Template: `worker-comfyui` (or the name you gave your template). + - (optional) Advanced: If you are using a Network Volume, select it under `Select Network Volume`. See the [Customization Guide](customization.md#method-2-network-volume-alternative-for-models). + +- Click `deploy` +- Your endpoint will be created. You can click on it to view the dashboard and find its ID. + +### GPU recommendations (for Official Images) + +| Model | Image Tag Suffix | Minimum VRAM Required | Recommended Container Size | +| ------------------------- | ---------------- | --------------------- | -------------------------- | +| Stable Diffusion XL | `sdxl` | 8 GB | 15 GB | +| Stable Diffusion 3 Medium | `sd3` | 5 GB | 20 GB | +| FLUX.1 Schnell | `flux1-schnell` | 24 GB | 30 GB | +| FLUX.1 dev | `flux1-dev` | 24 GB | 30 GB | +| Base (No models) | `base` | N/A | 5 GB | + +_Note: Container sizes are approximate and might vary slightly. Custom images will vary based on included models/nodes._ + +## Deploying Custom Setups + +If you have created a custom environment using the methods in the [Customization Guide](customization.md), here's how to deploy it. + +### Method 1: Manual Build, Push, and Deploy + +This method involves building your custom Docker image locally, pushing it to a registry, and then deploying that image on RunPod. + +1. **Write your Dockerfile:** Follow the instructions in the [Customization Guide](customization.md#method-1-custom-dockerfile-recommended) to create your `Dockerfile` specifying the base image, nodes, models, and any static files. +2. **Build the Docker image:** Navigate to the directory containing your `Dockerfile` and run: + ```bash + # Replace : with your desired name and tag + docker build --platform linux/amd64 -t : . + ``` + - **Crucially**, always include `--platform linux/amd64` for RunPod compatibility. +3. **Tag the image for your registry:** Replace `` and `:` accordingly. + ```bash + # Example for Docker Hub: + docker tag : /: + ``` +4. **Log in to your container registry:** + ```bash + # Example for Docker Hub: + docker login + ``` +5. **Push the image:** + ```bash + # Example for Docker Hub: + docker push /: + ``` +6. **Deploy on RunPod:** + - Follow the steps in [Create your template](#create-your-template-optional) above, but for the `Container Image` field, enter the full name of the image you just pushed (e.g., `/:`). + - If your registry is private, you will need to provide [Container Registry Credentials](https://docs.runpod.io/serverless/templates#container-registry-credentials). + - Adjust the `Container Disk` size based on your custom image contents. + - Follow the steps in [Create your endpoint](#create-your-endpoint) using the template you just created. + +### Method 2: Deploying via RunPod GitHub Integration + +RunPod offers a seamless way to deploy directly from your GitHub repository containing the `Dockerfile`. RunPod handles the build and deployment. + +1. **Prepare your GitHub Repository:** Ensure your repository contains the custom `Dockerfile` (as described in the [Customization Guide](customization.md#method-1-custom-dockerfile-recommended)) at the root or a specified path. +2. **Connect GitHub to RunPod:** Authorize RunPod to access your repository via your RunPod account settings or when creating a new endpoint. +3. **Create a New Serverless Endpoint:** In RunPod, navigate to Serverless -> `+ New Endpoint` and select the **"Start from GitHub Repo"** option. +4. **Configure:** + - Select the GitHub repository and branch you want to deploy (e.g., `main`). + - Specify the **Context Path** (usually `/` if the Dockerfile is at the root). + - Specify the **Dockerfile Path** (usually `Dockerfile`). + - Configure your desired compute resources (GPU type, workers, etc.). + - Configure any necessary [Environment Variables](configuration.md). +5. **Deploy:** RunPod will clone the repository, build the image from your specified branch and Dockerfile, push it to a temporary registry, and deploy the endpoint. + +Every `git push` to the configured branch will automatically trigger a new build and update your RunPod endpoint. For more details, refer to the [RunPod GitHub Integration Documentation](https://docs.runpod.io/serverless/github-integration). diff --git a/docs/development.md b/docs/development.md new file mode 100644 index 00000000..bdbed75a --- /dev/null +++ b/docs/development.md @@ -0,0 +1,130 @@ +# Development and Local Testing + +This guide covers setting up your local environment for developing and testing the `worker-comfyui`. + +Both tests will use the data from [`test_input.json`](../test_input.json), so make your changes in there to test different workflow inputs properly. + +## Setup + +### Prerequisites + +1. Python >= 3.10 +2. `pip` (Python package installer) +3. Virtual environment tool (like `venv`) + +### Steps + +1. **Clone the repository** (if you haven't already): + ```bash + git clone https://github.com/runpod-workers/worker-comfyui.git + cd worker-comfyui + ``` +2. **Create a virtual environment**: + ```bash + python -m venv .venv + ``` +3. **Activate the virtual environment**: + - **Windows (Command Prompt/PowerShell)**: + ```bash + .\.venv\Scripts\activate + ``` + - **macOS / Linux (Bash/Zsh)**: + ```bash + source ./.venv/bin/activate + ``` +4. **Install dependencies**: + ```bash + pip install -r requirements.txt + ``` + +### Setup for Windows (using WSL2) + +Running Docker with GPU acceleration on Windows typically requires WSL2 (Windows Subsystem for Linux). + +1. **Install WSL2 and a Linux distribution** (like Ubuntu) following [Microsoft's official guide](https://learn.microsoft.com/en-us/windows/wsl/install). You generally don't need the GUI support for this. +2. **Open your Linux distribution's terminal** (e.g., open Ubuntu from the Start menu or type `wsl` in Command Prompt/PowerShell). +3. **Update packages** inside WSL: + ```bash + sudo apt update && sudo apt upgrade -y + ``` +4. **Install Docker Engine in WSL**: + - Follow the [official Docker installation guide for your chosen Linux distribution](https://docs.docker.com/engine/install/#server) (e.g., Ubuntu). + - **Important:** Add your user to the `docker` group to avoid using `sudo` for every Docker command: `sudo usermod -aG docker $USER`. You might need to close and reopen the terminal for this to take effect. +5. **Install Docker Compose** (if not included with Docker Engine): + ```bash + sudo apt-get update + sudo apt-get install docker-compose-plugin # Or use the standalone binary method if preferred + ``` +6. **Install NVIDIA Container Toolkit in WSL**: + - Follow the [NVIDIA Container Toolkit installation guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html), ensuring you select the correct steps for your Linux distribution running inside WSL. + - Configure Docker to use the NVIDIA runtime as default if desired, or specify it when running containers. +7. **Enable GPU Acceleration in WSL**: + - Ensure you have the latest NVIDIA drivers installed on your Windows host machine. + - Follow the [NVIDIA guide for CUDA on WSL](https://docs.nvidia.com/cuda/wsl-user-guide/index.html). + +After completing these steps, you should be able to run Docker commands, including `docker-compose`, from within your WSL terminal with GPU access. + +> [!NOTE] +> +> - It is generally recommended to run the Docker commands (`docker build`, `docker-compose up`) from within the WSL environment terminal for consistency with the Linux-based container environment. +> - Accessing `localhost` URLs (like the local API or ComfyUI) from your Windows browser while the service runs inside WSL usually works, but network configurations can sometimes cause issues. + +## Testing the RunPod Handler + +Unit tests are provided to verify the core logic of the `handler.py`. + +- **Run all tests**: + ```bash + python -m unittest discover tests/ + ``` +- **Run a specific test file**: + ```bash + python -m unittest tests.test_handler + ``` +- **Run a specific test case or method**: + + ```bash + # Example: Run all tests in the TestRunpodWorkerComfy class + python -m unittest tests.test_handler.TestRunpodWorkerComfy + + # Example: Run a single test method + python -m unittest tests.test_handler.TestRunpodWorkerComfy.test_s3_upload + ``` + +## Local API Simulation (using Docker Compose) + +For enhanced local development and end-to-end testing, you can start a local environment using Docker Compose that includes the worker and a ComfyUI instance. + +> [!IMPORTANT] +> +> - This currently requires an **NVIDIA GPU** and correctly configured drivers + NVIDIA Container Toolkit (see Windows setup above if applicable). +> - Ensure Docker is running. + +**Steps:** + +1. **Set Environment Variable (Optional but Recommended):** + - While the `docker-compose.yml` sets `SERVE_API_LOCALLY=true` by default, you might manage environment variables externally (e.g., via a `.env` file). + - Ensure the `SERVE_API_LOCALLY` environment variable is set to `true` for the `worker` service if you modify the compose file or use an `.env` file. +2. **Start the services**: + ```bash + # From the project root directory + docker-compose up --build + ``` + - The `--build` flag ensures the image is built locally using the current state of the code and `Dockerfile`. + - This will start two containers: `comfyui` and `worker`. + +### Access the Local Worker API + +- With the Docker Compose stack running, the worker's simulated RunPod API is accessible at: [http://localhost:8000](http://localhost:8000) +- You can send POST requests to `http://localhost:8000/run` or `http://localhost:8000/runsync` with the same JSON payload structure expected by the RunPod endpoint. +- Opening [http://localhost:8000/docs](http://localhost:8000/docs) in your browser will show the FastAPI auto-generated documentation (Swagger UI), allowing you to interact with the API directly. + +### Access Local ComfyUI + +- The underlying ComfyUI instance running in the `comfyui` container is accessible directly at: [http://localhost:8188](http://localhost:8188) +- This is useful for debugging workflows or observing the ComfyUI state while testing the worker. + +### Stopping the Local Environment + +- Press `Ctrl+C` in the terminal where `docker-compose up` is running. +- To ensure containers are removed, you can run: `docker-compose down` diff --git a/docs/planning/001_websocket.md b/docs/planning/001_websocket.md new file mode 100644 index 00000000..29762482 --- /dev/null +++ b/docs/planning/001_websocket.md @@ -0,0 +1,57 @@ +# User Story: Implement Websocket API for ComfyUI Communication + +**Goal:** Replace the current HTTP polling mechanism in `handler.py` with ComfyUI's websocket API to monitor prompt execution status and retrieve generated images more efficiently and reliably. + +**Current State:** + +- `handler.py` queues a prompt via HTTP POST to `/prompt`. +- It then repeatedly polls the `/history/{prompt_id}` endpoint with a delay (`COMFY_POLLING_INTERVAL_MS`) until the job outputs appear in the history. +- Once outputs are detected, `process_output_images` retrieves image filenames from the history, constructs local file paths (assuming images are saved to `/comfyui/output`), checks for file existence, and then either uploads the file from disk to S3 or reads the file from disk to encode it as base64. This reliance on filesystem access is fragile. + +**Desired State:** + +- Use the ComfyUI websocket API (`ws:///ws?clientId=`) for real-time status updates. +- Eliminate the HTTP polling loop and associated constants. +- Retrieve final image data directly using the `/view` API endpoint instead of relying on filesystem access within the container. +- Maintain existing functionality for uploading images to S3 or returning base64 encoded images. + +**Tasks:** + +1. **Add Dependency:** Add `websocket-client` to the `requirements.txt` file. +2. **Modify `handler.py`:** + - Import `websocket` and `uuid`. + - Generate a unique `client_id` (using `uuid.uuid4()`) for each job request within the `handler` function. + - Modify `queue_workflow`: Update the function signature and implementation to accept the `client_id` and include it in the `/prompt` request payload (`{"prompt": workflow, "client_id": client_id}`). + - **Websocket Connection & Monitoring:** + - Establish a websocket connection before queuing the prompt: `ws = websocket.WebSocket()` followed by `ws.connect(f"ws://{COMFY_HOST}/ws?clientId={client_id}")`. + - After queuing the prompt and getting the `prompt_id`, implement the websocket message receiving loop (`while True: out = ws.recv()...`). Listen for the specific `executing` message indicating the prompt is finished (where `message['data']['node'] is None` and `message['data']['prompt_id'] == prompt_id`). + - Ensure the websocket connection is closed (`ws.close()`) after monitoring is complete or in case of errors (using a `try...finally` block). + - **Image Retrieval & Handling:** + - After the websocket indicates completion, call `get_history(prompt_id)` to get the final output structure (as done in the example). + - Create a new function `get_image_data(filename, subfolder, image_type)` that uses `urllib.request` (or `requests`) to fetch image _bytes_ from the `http://{COMFY_HOST}/view` endpoint. + - Replace the logic previously in `process_output_images` (or integrate into the main `handler` flow after getting history): + - Iterate through the `outputs` in the fetched history. + - For each image identified in the `outputs` dictionary: + - Call `get_image_data` to retrieve the raw image bytes. + - If S3 is configured (`BUCKET_ENDPOINT_URL` env var is set): + - Save the image bytes to a temporary file (using Python's `tempfile` module). + - Use `rp_upload.upload_image(job_id, temp_file_path)` to upload the temporary file to S3. Determine the correct file extension if possible, default to '.png'. + - Ensure the temporary file is deleted after upload. + - Store the returned S3 URL. + - If S3 is not configured: + - Base64 encode the image bytes directly. + - Store the resulting base64 string. + - Aggregate all resulting image URLs and/or base64 strings into a suitable format (e.g., a list or dictionary). + - **Cleanup:** + - Remove the old `process_output_images` function. + - Remove the polling-related constants (`COMFY_POLLING_INTERVAL_MS`, `COMFY_POLLING_MAX_RETRIES`) and the polling `while` loop. + - **Error Handling:** Add robust error handling for websocket connection establishment, message receiving/parsing, image data fetching (`/view`), temporary file operations, and S3 uploads. +3. **Testing:** + - Update unit tests in `tests/` to mock the websocket interactions and verify the new logic. + - Perform local end-to-end testing using `docker-compose up` to ensure the integration with a live ComfyUI instance works as expected for both S3 and base64 output modes. + +**Considerations:** + +- **Websocket Reliability:** Implement try/except blocks around websocket operations. Consider if simple retries are needed for connection failures. +- **Temporary Files for S3:** Using temporary files adds minor overhead but fits the current `runpod` SDK (`rp_upload.upload_image`). Ensure proper cleanup using `try...finally` or context managers. +- **Runpod Lifecycle:** Creating a new websocket connection per `handler` invocation is standard for serverless function executions and ensures isolation. diff --git a/docs/planning/002_restructure_docs.md b/docs/planning/002_restructure_docs.md new file mode 100644 index 00000000..608ad957 --- /dev/null +++ b/docs/planning/002_restructure_docs.md @@ -0,0 +1,45 @@ +# User Story: Restructure Documentation for Clarity and Maintainability + +**Goal:** Refactor the main `README.md` to focus on essential user information (deployment, configuration basics, API usage) and move detailed sections (customization, local development, CI/CD, etc.) into separate, focused documents within the `docs/` directory. Improve overall documentation structure and ease of navigation. + +**Current State:** + +- The `README.md` file is very large and covers a wide range of topics, from basic usage to advanced customization and development setup. +- It can be difficult for users to quickly find the specific information they need (e.g., just how to run the API vs. how to build a custom image). +- The release process (`.releaserc`) currently updates version numbers only within `README.md` using a `sed` command. + +**Desired State:** + +- A concise `README.md` serving as a landing page and quickstart guide, containing: + - Brief introduction/purpose. + - Quickstart guide (linking to detailed deployment). + - List of available pre-built images (with current version tags). + - Essential configuration (S3 setup, linking to full config). + - API specification (endpoints, input/output formats). + - Basic API interaction examples (linking to details if needed). + - How to get the ComfyUI workflow JSON. + - Clear links to more detailed documentation in the `docs/` directory. +- New documents created within `docs/` covering specific topics: + - `docs/deployment.md`: Detailed RunPod template/endpoint creation, GPU recommendations. + - `docs/configuration.md`: Comprehensive list and explanation of all environment variables. + - `docs/customization.md`: In-depth guide on using Network Volumes and building custom Docker images (models, nodes, snapshots). + - `docs/development.md`: Instructions for local setup (Python, WSL), running tests, using `docker-compose`, accessing local API/ComfyUI. + - `docs/ci-cd.md`: Explanation of the GitHub Actions workflows for Docker Hub deployment (secrets, variables). + - `docs/acknowledgments.md`: (Optional) Move acknowledgments here. +- Specific version numbers (e.g., `3.6.0` in image tags) should ideally only reside in the main `README.md` to avoid complicating the release script. If version numbers must exist in other files, the `.releaserc` `prepareCmd` will need modification. + +**Tasks:** + +1. **Create New Files:** Create the following new markdown files within the `docs/` directory: `deployment.md`, `configuration.md`, `customization.md`, `development.md`, `ci-cd.md`, (optionally `acknowledgments.md`). +2. **Migrate Content:** Carefully move relevant sections from the current `README.md` into the corresponding new files in `docs/`. Ensure content flows logically within each new document. +3. **Refactor `README.md`:** Rewrite and condense `README.md` to focus on the core user information identified in the "Desired State". Remove migrated content. +4. **Add Links:** Insert clear links within the refactored `README.md` pointing to the detailed information in the new `docs/` files (e.g., "For detailed deployment steps, see [Deployment Guide](docs/deployment.md)."). Also, ensure inter-linking between new docs where relevant. +5. **Review Versioning:** Scrutinize all documentation files (`README.md` and `docs/*`) to ensure specific version numbers (like image tags) are confined to `README.md` where possible. +6. **Verify Release Script:** Confirm that the existing `prepareCmd` in `.releaserc` is still sufficient (targets the right file and pattern for version replacement). If version numbers were unavoidably moved outside `README.md`, update the `sed` command accordingly to target the additional files. +7. **Review and Test:** Read through the restructured documentation to ensure clarity, accuracy, and completeness. Verify all internal links work correctly. + +**Considerations:** + +- **Discoverability:** While splitting improves focus, ensure the main `README.md` provides good entry points/links so users can find detailed information. +- **Consistency:** Maintain consistent formatting and tone across all documentation files. +- **Versioning Maintenance:** Keeping version numbers primarily in `README.md` simplifies the release automation script. diff --git a/handler.py b/handler.py new file mode 100644 index 00000000..b3c193a9 --- /dev/null +++ b/handler.py @@ -0,0 +1,631 @@ +import runpod +from runpod.serverless.utils import rp_upload +import json +import urllib.request +import urllib.parse +import time +import os +import requests +import base64 +from io import BytesIO +import websocket +import uuid +import tempfile +import socket + +# Time to wait between API check attempts in milliseconds +COMFY_API_AVAILABLE_INTERVAL_MS = 50 +# Maximum number of API check attempts +COMFY_API_AVAILABLE_MAX_RETRIES = 500 +# Websocket Reconnection Retries (when connection drops during recv) +WEBSOCKET_RECONNECT_ATTEMPTS = 2 +WEBSOCKET_RECONNECT_DELAY_S = 3 +# Host where ComfyUI is running +COMFY_HOST = "127.0.0.1:8188" +# Enforce a clean state after each job is done +# see https://docs.runpod.io/docs/handler-additional-controls#refresh-worker +REFRESH_WORKER = os.environ.get("REFRESH_WORKER", "false").lower() == "true" + + +def _attempt_websocket_reconnect(ws_url, max_attempts, delay_s, initial_error): + """ + Attempts to reconnect to the WebSocket server after a disconnect. + + Args: + ws_url (str): The WebSocket URL (including client_id). + max_attempts (int): Maximum number of reconnection attempts. + delay_s (int): Delay in seconds between attempts. + initial_error (Exception): The error that triggered the reconnect attempt. + + Returns: + websocket.WebSocket: The newly connected WebSocket object. + + Raises: + websocket.WebSocketConnectionClosedException: If reconnection fails after all attempts. + """ + print( + f"worker-comfyui - Websocket connection closed unexpectedly: {initial_error}. Attempting to reconnect..." + ) + last_reconnect_error = initial_error + for attempt in range(max_attempts): + print(f"worker-comfyui - Reconnect attempt {attempt + 1}/{max_attempts}...") + try: + # Need to create a new socket object for reconnect + new_ws = websocket.WebSocket() + new_ws.connect(ws_url, timeout=10) # Use existing ws_url + print(f"worker-comfyui - Websocket reconnected successfully.") + return new_ws # Return the new connected socket + except ( + websocket.WebSocketException, + ConnectionRefusedError, + socket.timeout, + OSError, + ) as reconn_err: + last_reconnect_error = reconn_err + print( + f"worker-comfyui - Reconnect attempt {attempt + 1} failed: {reconn_err}" + ) + if attempt < max_attempts - 1: + print( + f"worker-comfyui - Waiting {delay_s} seconds before next attempt..." + ) + time.sleep(delay_s) + else: + print(f"worker-comfyui - Max reconnection attempts reached.") + + # If loop completes without returning, raise an exception + print("worker-comfyui - Failed to reconnect websocket after connection closed.") + raise websocket.WebSocketConnectionClosedException( + f"Connection closed and failed to reconnect. Last error: {last_reconnect_error}" + ) + + +def validate_input(job_input): + """ + Validates the input for the handler function. + + Args: + job_input (dict): The input data to validate. + + Returns: + tuple: A tuple containing the validated data and an error message, if any. + The structure is (validated_data, error_message). + """ + # Validate if job_input is provided + if job_input is None: + return None, "Please provide input" + + # Check if input is a string and try to parse it as JSON + if isinstance(job_input, str): + try: + job_input = json.loads(job_input) + except json.JSONDecodeError: + return None, "Invalid JSON format in input" + + # Validate 'workflow' in input + workflow = job_input.get("workflow") + if workflow is None: + return None, "Missing 'workflow' parameter" + + # Validate 'images' in input, if provided + images = job_input.get("images") + if images is not None: + if not isinstance(images, list) or not all( + "name" in image and "image" in image for image in images + ): + return ( + None, + "'images' must be a list of objects with 'name' and 'image' keys", + ) + + # Return validated data and no error + return {"workflow": workflow, "images": images}, None + + +def check_server(url, retries=500, delay=50): + """ + Check if a server is reachable via HTTP GET request + + Args: + - url (str): The URL to check + - retries (int, optional): The number of times to attempt connecting to the server. Default is 50 + - delay (int, optional): The time in milliseconds to wait between retries. Default is 500 + + Returns: + bool: True if the server is reachable within the given number of retries, otherwise False + """ + + print(f"worker-comfyui - Checking API server at {url}...") + for i in range(retries): + try: + response = requests.get(url, timeout=5) + + # If the response status code is 200, the server is up and running + if response.status_code == 200: + print(f"worker-comfyui - API is reachable") + return True + except requests.Timeout: + pass + except requests.RequestException as e: + pass + + # Wait for the specified delay before retrying + time.sleep(delay / 1000) + + print( + f"worker-comfyui - Failed to connect to server at {url} after {retries} attempts." + ) + return False + + +def upload_images(images): + """ + Upload a list of base64 encoded images to the ComfyUI server using the /upload/image endpoint. + + Args: + images (list): A list of dictionaries, each containing the 'name' of the image and the 'image' as a base64 encoded string. + + Returns: + dict: A dictionary indicating success or error. + """ + if not images: + return {"status": "success", "message": "No images to upload", "details": []} + + responses = [] + upload_errors = [] + + print(f"worker-comfyui - Uploading {len(images)} image(s)...") + + for image in images: + try: + name = image["name"] + image_data_uri = image["image"] # Get the full string (might have prefix) + + # --- Strip Data URI prefix if present --- + if "," in image_data_uri: + # Find the comma and take everything after it + base64_data = image_data_uri.split(",", 1)[1] + else: + # Assume it's already pure base64 + base64_data = image_data_uri + # --- End strip --- + + blob = base64.b64decode(base64_data) # Decode the cleaned data + + # Prepare the form data + files = { + "image": (name, BytesIO(blob), "image/png"), + "overwrite": (None, "true"), + } + + # POST request to upload the image + response = requests.post( + f"http://{COMFY_HOST}/upload/image", files=files, timeout=30 + ) + response.raise_for_status() + + responses.append(f"Successfully uploaded {name}") + print(f"worker-comfyui - Successfully uploaded {name}") + + except base64.binascii.Error as e: + error_msg = f"Error decoding base64 for {image.get('name', 'unknown')}: {e}" + print(f"worker-comfyui - {error_msg}") + upload_errors.append(error_msg) + except requests.Timeout: + error_msg = f"Timeout uploading {image.get('name', 'unknown')}" + print(f"worker-comfyui - {error_msg}") + upload_errors.append(error_msg) + except requests.RequestException as e: + error_msg = f"Error uploading {image.get('name', 'unknown')}: {e}" + print(f"worker-comfyui - {error_msg}") + upload_errors.append(error_msg) + except Exception as e: + error_msg = ( + f"Unexpected error uploading {image.get('name', 'unknown')}: {e}" + ) + print(f"worker-comfyui - {error_msg}") + upload_errors.append(error_msg) + + if upload_errors: + print(f"worker-comfyui - image(s) upload finished with errors") + return { + "status": "error", + "message": "Some images failed to upload", + "details": upload_errors, + } + + print(f"worker-comfyui - image(s) upload complete") + return { + "status": "success", + "message": "All images uploaded successfully", + "details": responses, + } + + +def queue_workflow(workflow, client_id): + """ + Queue a workflow to be processed by ComfyUI + + Args: + workflow (dict): A dictionary containing the workflow to be processed + client_id (str): The client ID for the websocket connection + + Returns: + dict: The JSON response from ComfyUI after processing the workflow + """ + # Include client_id in the prompt payload + payload = {"prompt": workflow, "client_id": client_id} + data = json.dumps(payload).encode("utf-8") + + # Use requests for consistency and timeout + headers = {"Content-Type": "application/json"} + response = requests.post( + f"http://{COMFY_HOST}/prompt", data=data, headers=headers, timeout=30 + ) + response.raise_for_status() + return response.json() + + +def get_history(prompt_id): + """ + Retrieve the history of a given prompt using its ID + + Args: + prompt_id (str): The ID of the prompt whose history is to be retrieved + + Returns: + dict: The history of the prompt, containing all the processing steps and results + """ + # Use requests for consistency and timeout + response = requests.get(f"http://{COMFY_HOST}/history/{prompt_id}", timeout=30) + response.raise_for_status() + return response.json() + + +def get_image_data(filename, subfolder, image_type): + """ + Fetch image bytes from the ComfyUI /view endpoint. + + Args: + filename (str): The filename of the image. + subfolder (str): The subfolder where the image is stored. + image_type (str): The type of the image (e.g., 'output'). + + Returns: + bytes: The raw image data, or None if an error occurs. + """ + print( + f"worker-comfyui - Fetching image data: type={image_type}, subfolder={subfolder}, filename={filename}" + ) + data = {"filename": filename, "subfolder": subfolder, "type": image_type} + url_values = urllib.parse.urlencode(data) + try: + # Use requests for consistency and timeout + response = requests.get(f"http://{COMFY_HOST}/view?{url_values}", timeout=60) + response.raise_for_status() + print(f"worker-comfyui - Successfully fetched image data for {filename}") + return response.content + except requests.Timeout: + print(f"worker-comfyui - Timeout fetching image data for {filename}") + return None + except requests.RequestException as e: + print(f"worker-comfyui - Error fetching image data for {filename}: {e}") + return None + except Exception as e: + print( + f"worker-comfyui - Unexpected error fetching image data for {filename}: {e}" + ) + return None + + +def handler(job): + """ + Handles a job using ComfyUI via websockets for status and image retrieval. + + Args: + job (dict): A dictionary containing job details and input parameters. + + Returns: + dict: A dictionary containing either an error message or a success status with generated images. + """ + job_input = job["input"] + job_id = job["id"] + + # Make sure that the input is valid + validated_data, error_message = validate_input(job_input) + if error_message: + return {"error": error_message} + + # Extract validated data + workflow = validated_data["workflow"] + input_images = validated_data.get("images") + + # Make sure that the ComfyUI HTTP API is available before proceeding + if not check_server( + f"http://{COMFY_HOST}/", + COMFY_API_AVAILABLE_MAX_RETRIES, + COMFY_API_AVAILABLE_INTERVAL_MS, + ): + return { + "error": f"ComfyUI server ({COMFY_HOST}) not reachable after multiple retries." + } + + # Upload input images if they exist + if input_images: + upload_result = upload_images(input_images) + if upload_result["status"] == "error": + # Return upload errors + return { + "error": "Failed to upload one or more input images", + "details": upload_result["details"], + } + + ws = None + client_id = str(uuid.uuid4()) + prompt_id = None + output_data = [] + errors = [] + + try: + # Establish WebSocket connection + ws_url = f"ws://{COMFY_HOST}/ws?clientId={client_id}" + print(f"worker-comfyui - Connecting to websocket: {ws_url}") + ws = websocket.WebSocket() + ws.connect(ws_url, timeout=10) + print(f"worker-comfyui - Websocket connected") + + # Queue the workflow + try: + queued_workflow = queue_workflow(workflow, client_id) + prompt_id = queued_workflow.get("prompt_id") + if not prompt_id: + raise ValueError( + f"Missing 'prompt_id' in queue response: {queued_workflow}" + ) + print(f"worker-comfyui - Queued workflow with ID: {prompt_id}") + except requests.RequestException as e: + print(f"worker-comfyui - Error queuing workflow: {e}") + raise ValueError(f"Error queuing workflow: {e}") + except Exception as e: + print(f"worker-comfyui - Unexpected error queuing workflow: {e}") + raise ValueError(f"Unexpected error queuing workflow: {e}") + + # Wait for execution completion via WebSocket + print(f"worker-comfyui - Waiting for workflow execution ({prompt_id})...") + execution_done = False + while True: + try: + out = ws.recv() + if isinstance(out, str): + message = json.loads(out) + if message.get("type") == "status": + status_data = message.get("data", {}).get("status", {}) + print( + f"worker-comfyui - Status update: {status_data.get('exec_info', {}).get('queue_remaining', 'N/A')} items remaining in queue" + ) + elif message.get("type") == "executing": + data = message.get("data", {}) + if ( + data.get("node") is None + and data.get("prompt_id") == prompt_id + ): + print( + f"worker-comfyui - Execution finished for prompt {prompt_id}" + ) + execution_done = True + break + elif message.get("type") == "execution_error": + data = message.get("data", {}) + if data.get("prompt_id") == prompt_id: + error_details = f"Node Type: {data.get('node_type')}, Node ID: {data.get('node_id')}, Message: {data.get('exception_message')}" + print( + f"worker-comfyui - Execution error received: {error_details}" + ) + errors.append(f"Workflow execution error: {error_details}") + break + else: + continue + except websocket.WebSocketTimeoutException: + print(f"worker-comfyui - Websocket receive timed out. Still waiting...") + continue + except websocket.WebSocketConnectionClosedException as closed_err: + try: + # Attempt to reconnect + ws = _attempt_websocket_reconnect( + ws_url, + WEBSOCKET_RECONNECT_ATTEMPTS, + WEBSOCKET_RECONNECT_DELAY_S, + closed_err, + ) + + print( + "worker-comfyui - Resuming message listening after successful reconnect." + ) + continue + except ( + websocket.WebSocketConnectionClosedException + ) as reconn_failed_err: + # If _attempt_websocket_reconnect fails, it raises this exception + # Let this exception propagate to the outer handler's except block + raise reconn_failed_err + + except json.JSONDecodeError: + print(f"worker-comfyui - Received invalid JSON message via websocket.") + + if not execution_done and not errors: + raise ValueError( + "Workflow monitoring loop exited without confirmation of completion or error." + ) + + # Fetch history even if there were execution errors, some outputs might exist + print(f"worker-comfyui - Fetching history for prompt {prompt_id}...") + history = get_history(prompt_id) + + if prompt_id not in history: + error_msg = f"Prompt ID {prompt_id} not found in history after execution." + print(f"worker-comfyui - {error_msg}") + if not errors: + return {"error": error_msg} + else: + errors.append(error_msg) + return { + "error": "Job processing failed, prompt ID not found in history.", + "details": errors, + } + + prompt_history = history.get(prompt_id, {}) + outputs = prompt_history.get("outputs", {}) + + if not outputs: + warning_msg = f"No outputs found in history for prompt {prompt_id}." + print(f"worker-comfyui - {warning_msg}") + if not errors: + errors.append(warning_msg) + + print(f"worker-comfyui - Processing {len(outputs)} output nodes...") + for node_id, node_output in outputs.items(): + if "images" in node_output: + print( + f"worker-comfyui - Node {node_id} contains {len(node_output['images'])} image(s)" + ) + for image_info in node_output["images"]: + filename = image_info.get("filename") + subfolder = image_info.get("subfolder", "") + img_type = image_info.get("type") + + # skip temp images + if img_type == "temp": + print( + f"worker-comfyui - Skipping image {filename} because type is 'temp'" + ) + continue + + if not filename: + warn_msg = f"Skipping image in node {node_id} due to missing filename: {image_info}" + print(f"worker-comfyui - {warn_msg}") + errors.append(warn_msg) + continue + + image_bytes = get_image_data(filename, subfolder, img_type) + + if image_bytes: + file_extension = os.path.splitext(filename)[1] or ".png" + + if os.environ.get("BUCKET_ENDPOINT_URL"): + try: + with tempfile.NamedTemporaryFile( + suffix=file_extension, delete=False + ) as temp_file: + temp_file.write(image_bytes) + temp_file_path = temp_file.name + print( + f"worker-comfyui - Wrote image bytes to temporary file: {temp_file_path}" + ) + + print(f"worker-comfyui - Uploading {filename} to S3...") + s3_url = rp_upload.upload_image(job_id, temp_file_path) + os.remove(temp_file_path) # Clean up temp file + print( + f"worker-comfyui - Uploaded {filename} to S3: {s3_url}" + ) + # Append dictionary with filename and URL + output_data.append( + { + "filename": filename, + "type": "s3_url", + "data": s3_url, + } + ) + except Exception as e: + error_msg = f"Error uploading {filename} to S3: {e}" + print(f"worker-comfyui - {error_msg}") + errors.append(error_msg) + if "temp_file_path" in locals() and os.path.exists( + temp_file_path + ): + try: + os.remove(temp_file_path) + except OSError as rm_err: + print( + f"worker-comfyui - Error removing temp file {temp_file_path}: {rm_err}" + ) + else: + # Return as base64 string + try: + base64_image = base64.b64encode(image_bytes).decode( + "utf-8" + ) + # Append dictionary with filename and base64 data + output_data.append( + { + "filename": filename, + "type": "base64", + "data": base64_image, + } + ) + print(f"worker-comfyui - Encoded {filename} as base64") + except Exception as e: + error_msg = f"Error encoding {filename} to base64: {e}" + print(f"worker-comfyui - {error_msg}") + errors.append(error_msg) + else: + error_msg = f"Failed to fetch image data for {filename} from /view endpoint." + errors.append(error_msg) + + # Check for other output types + other_keys = [k for k in node_output.keys() if k != "images"] + if other_keys: + warn_msg = ( + f"Node {node_id} produced unhandled output keys: {other_keys}." + ) + print(f"worker-comfyui - WARNING: {warn_msg}") + print( + f"worker-comfyui - --> If this output is useful, please consider opening an issue on GitHub to discuss adding support." + ) + + except websocket.WebSocketException as e: + print(f"worker-comfyui - WebSocket Error: {e}") + return {"error": f"WebSocket communication error: {e}"} + except requests.RequestException as e: + print(f"worker-comfyui - HTTP Request Error: {e}") + return {"error": f"HTTP communication error with ComfyUI: {e}"} + except ValueError as e: + print(f"worker-comfyui - Value Error: {e}") + return {"error": str(e)} + except Exception as e: + print(f"worker-comfyui - Unexpected Handler Error: {e}") + return {"error": f"An unexpected error occurred: {e}"} + finally: + if ws and ws.connected: + print(f"worker-comfyui - Closing websocket connection.") + ws.close() + + final_result = {} + + if output_data: + final_result["images"] = output_data + + if errors: + final_result["errors"] = errors + print(f"worker-comfyui - Job completed with errors/warnings: {errors}") + + if not output_data and errors: + print(f"worker-comfyui - Job failed with no output images.") + return { + "error": "Job processing failed", + "details": errors, + } + elif not output_data and not errors: + print( + f"worker-comfyui - Job completed successfully, but the workflow produced no images." + ) + final_result["status"] = "success_no_images" + final_result["images"] = [] + + print(f"worker-comfyui - Job completed. Returning {len(output_data)} image(s).") + return final_result + + +if __name__ == "__main__": + print("worker-comfyui - Starting handler...") + runpod.serverless.start({"handler": handler}) diff --git a/requirements.txt b/requirements.txt index e079d600..d73f9a33 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1 +1,3 @@ -runpod~=1.7.9 \ No newline at end of file +runpod~=1.7.9 +websocket-client +requests \ No newline at end of file diff --git a/src/rp_handler.py b/src/rp_handler.py deleted file mode 100644 index 255753a1..00000000 --- a/src/rp_handler.py +++ /dev/null @@ -1,346 +0,0 @@ -import runpod -from runpod.serverless.utils import rp_upload -import json -import urllib.request -import urllib.parse -import time -import os -import requests -import base64 -from io import BytesIO - -# Time to wait between API check attempts in milliseconds -COMFY_API_AVAILABLE_INTERVAL_MS = 50 -# Maximum number of API check attempts -COMFY_API_AVAILABLE_MAX_RETRIES = 500 -# Time to wait between poll attempts in milliseconds -COMFY_POLLING_INTERVAL_MS = int(os.environ.get("COMFY_POLLING_INTERVAL_MS", 250)) -# Maximum number of poll attempts -COMFY_POLLING_MAX_RETRIES = int(os.environ.get("COMFY_POLLING_MAX_RETRIES", 500)) -# Host where ComfyUI is running -COMFY_HOST = "127.0.0.1:8188" -# Enforce a clean state after each job is done -# see https://docs.runpod.io/docs/handler-additional-controls#refresh-worker -REFRESH_WORKER = os.environ.get("REFRESH_WORKER", "false").lower() == "true" - - -def validate_input(job_input): - """ - Validates the input for the handler function. - - Args: - job_input (dict): The input data to validate. - - Returns: - tuple: A tuple containing the validated data and an error message, if any. - The structure is (validated_data, error_message). - """ - # Validate if job_input is provided - if job_input is None: - return None, "Please provide input" - - # Check if input is a string and try to parse it as JSON - if isinstance(job_input, str): - try: - job_input = json.loads(job_input) - except json.JSONDecodeError: - return None, "Invalid JSON format in input" - - # Validate 'workflow' in input - workflow = job_input.get("workflow") - if workflow is None: - return None, "Missing 'workflow' parameter" - - # Validate 'images' in input, if provided - images = job_input.get("images") - if images is not None: - if not isinstance(images, list) or not all( - "name" in image and "image" in image for image in images - ): - return ( - None, - "'images' must be a list of objects with 'name' and 'image' keys", - ) - - # Return validated data and no error - return {"workflow": workflow, "images": images}, None - - -def check_server(url, retries=500, delay=50): - """ - Check if a server is reachable via HTTP GET request - - Args: - - url (str): The URL to check - - retries (int, optional): The number of times to attempt connecting to the server. Default is 50 - - delay (int, optional): The time in milliseconds to wait between retries. Default is 500 - - Returns: - bool: True if the server is reachable within the given number of retries, otherwise False - """ - - for i in range(retries): - try: - response = requests.get(url) - - # If the response status code is 200, the server is up and running - if response.status_code == 200: - print(f"worker-comfyui - API is reachable") - return True - except requests.RequestException as e: - # If an exception occurs, the server may not be ready - pass - - # Wait for the specified delay before retrying - time.sleep(delay / 1000) - - print( - f"worker-comfyui - Failed to connect to server at {url} after {retries} attempts." - ) - return False - - -def upload_images(images): - """ - Upload a list of base64 encoded images to the ComfyUI server using the /upload/image endpoint. - - Args: - images (list): A list of dictionaries, each containing the 'name' of the image and the 'image' as a base64 encoded string. - server_address (str): The address of the ComfyUI server. - - Returns: - list: A list of responses from the server for each image upload. - """ - if not images: - return {"status": "success", "message": "No images to upload", "details": []} - - responses = [] - upload_errors = [] - - print(f"worker-comfyui - image(s) upload") - - for image in images: - name = image["name"] - image_data = image["image"] - blob = base64.b64decode(image_data) - - # Prepare the form data - files = { - "image": (name, BytesIO(blob), "image/png"), - "overwrite": (None, "true"), - } - - # POST request to upload the image - response = requests.post(f"http://{COMFY_HOST}/upload/image", files=files) - if response.status_code != 200: - upload_errors.append(f"Error uploading {name}: {response.text}") - else: - responses.append(f"Successfully uploaded {name}") - - if upload_errors: - print(f"worker-comfyui - image(s) upload with errors") - return { - "status": "error", - "message": "Some images failed to upload", - "details": upload_errors, - } - - print(f"worker-comfyui - image(s) upload complete") - return { - "status": "success", - "message": "All images uploaded successfully", - "details": responses, - } - - -def queue_workflow(workflow): - """ - Queue a workflow to be processed by ComfyUI - - Args: - workflow (dict): A dictionary containing the workflow to be processed - - Returns: - dict: The JSON response from ComfyUI after processing the workflow - """ - - # The top level element "prompt" is required by ComfyUI - data = json.dumps({"prompt": workflow}).encode("utf-8") - - req = urllib.request.Request(f"http://{COMFY_HOST}/prompt", data=data) - return json.loads(urllib.request.urlopen(req).read()) - - -def get_history(prompt_id): - """ - Retrieve the history of a given prompt using its ID - - Args: - prompt_id (str): The ID of the prompt whose history is to be retrieved - - Returns: - dict: The history of the prompt, containing all the processing steps and results - """ - with urllib.request.urlopen(f"http://{COMFY_HOST}/history/{prompt_id}") as response: - return json.loads(response.read()) - - -def base64_encode(img_path): - """ - Returns base64 encoded image. - - Args: - img_path (str): The path to the image - - Returns: - str: The base64 encoded image - """ - with open(img_path, "rb") as image_file: - encoded_string = base64.b64encode(image_file.read()).decode("utf-8") - return f"{encoded_string}" - - -def process_output_images(outputs, job_id): - """ - This function takes the "outputs" from image generation and the job ID, - then determines the correct way to return the image, either as a direct URL - to an AWS S3 bucket or as a base64 encoded string, depending on the - environment configuration. - - Args: - outputs (dict): A dictionary containing the outputs from image generation, - typically includes node IDs and their respective output data. - job_id (str): The unique identifier for the job. - - Returns: - dict: A dictionary with the status ('success' or 'error') and the message, - which is either the URL to the image in the AWS S3 bucket or a base64 - encoded string of the image. In case of error, the message details the issue. - - The function works as follows: - - It first determines the output path for the images from an environment variable, - defaulting to "/comfyui/output" if not set. - - It then iterates through the outputs to find the filenames of the generated images. - - After confirming the existence of the image in the output folder, it checks if the - AWS S3 bucket is configured via the BUCKET_ENDPOINT_URL environment variable. - - If AWS S3 is configured, it uploads the image to the bucket and returns the URL. - - If AWS S3 is not configured, it encodes the image in base64 and returns the string. - - If the image file does not exist in the output folder, it returns an error status - with a message indicating the missing image file. - """ - - # The path where ComfyUI stores the generated images - COMFY_OUTPUT_PATH = os.environ.get("COMFY_OUTPUT_PATH", "/comfyui/output") - - output_images = {} - - for node_id, node_output in outputs.items(): - if "images" in node_output: - for image in node_output["images"]: - output_images = os.path.join(image["subfolder"], image["filename"]) - - print(f"worker-comfyui - image generation is done") - - # expected image output folder - local_image_path = f"{COMFY_OUTPUT_PATH}/{output_images}" - - print(f"worker-comfyui - {local_image_path}") - - # The image is in the output folder - if os.path.exists(local_image_path): - if os.environ.get("BUCKET_ENDPOINT_URL", False): - # URL to image in AWS S3 - image = rp_upload.upload_image(job_id, local_image_path) - print("worker-comfyui - the image was generated and uploaded to AWS S3") - else: - # base64 image - image = base64_encode(local_image_path) - print("worker-comfyui - the image was generated and converted to base64") - - return { - "status": "success", - "message": image, - } - else: - print("worker-comfyui - the image does not exist in the output folder") - return { - "status": "error", - "message": f"the image does not exist in the specified output folder: {local_image_path}", - } - - -def handler(job): - """ - The main function that handles a job of generating an image. - - This function validates the input, sends a prompt to ComfyUI for processing, - polls ComfyUI for result, and retrieves generated images. - - Args: - job (dict): A dictionary containing job details and input parameters. - - Returns: - dict: A dictionary containing either an error message or a success status with generated images. - """ - job_input = job["input"] - - # Make sure that the input is valid - validated_data, error_message = validate_input(job_input) - if error_message: - return {"error": error_message} - - # Extract validated data - workflow = validated_data["workflow"] - images = validated_data.get("images") - - # Make sure that the ComfyUI API is available - check_server( - f"http://{COMFY_HOST}", - COMFY_API_AVAILABLE_MAX_RETRIES, - COMFY_API_AVAILABLE_INTERVAL_MS, - ) - - # Upload images if they exist - upload_result = upload_images(images) - - if upload_result["status"] == "error": - return upload_result - - # Queue the workflow - try: - queued_workflow = queue_workflow(workflow) - prompt_id = queued_workflow["prompt_id"] - print(f"worker-comfyui - queued workflow with ID {prompt_id}") - except Exception as e: - return {"error": f"Error queuing workflow: {str(e)}"} - - # Poll for completion - print(f"worker-comfyui - wait until image generation is complete") - retries = 0 - try: - while retries < COMFY_POLLING_MAX_RETRIES: - history = get_history(prompt_id) - - # Exit the loop if we have found the history - if prompt_id in history and history[prompt_id].get("outputs"): - break - else: - # Wait before trying again - time.sleep(COMFY_POLLING_INTERVAL_MS / 1000) - retries += 1 - else: - return {"error": "Max retries reached while waiting for image generation"} - except Exception as e: - return {"error": f"Error waiting for image generation: {str(e)}"} - - # Get the generated image and return it as URL in an AWS bucket or as base64 - images_result = process_output_images(history[prompt_id].get("outputs"), job["id"]) - - result = {**images_result, "refresh_worker": REFRESH_WORKER} - - return result - - -# Start the handler only if this script is run directly -if __name__ == "__main__": - runpod.serverless.start({"handler": handler}) diff --git a/src/start.sh b/src/start.sh index 1c448ed0..8c045398 100644 --- a/src/start.sh +++ b/src/start.sh @@ -10,11 +10,11 @@ if [ "$SERVE_API_LOCALLY" == "true" ]; then python /comfyui/main.py --disable-auto-launch --disable-metadata --listen & echo "worker-comfyui: Starting RunPod Handler" - python -u /rp_handler.py --rp_serve_api --rp_api_host=0.0.0.0 + python -u /handler.py --rp_serve_api --rp_api_host=0.0.0.0 else echo "worker-comfyui: Starting ComfyUI" python /comfyui/main.py --disable-auto-launch --disable-metadata & echo "worker-comfyui: Starting RunPod Handler" - python -u /rp_handler.py + python -u /handler.py fi \ No newline at end of file diff --git a/test_input.json b/test_input.json index 7fdb0f20..13384110 100644 --- a/test_input.json +++ b/test_input.json @@ -1,62 +1,118 @@ { "input": { + "images": [ + { + "name": "test.png", + "image": "" + } + ], "workflow": { - "3": { + "6": { "inputs": { - "seed": 234234, - "steps": 20, - "cfg": 8, - "sampler_name": "euler", - "scheduler": "normal", - "denoise": 1, - "model": ["4", 0], - "positive": ["6", 0], - "negative": ["7", 0], - "latent_image": ["5", 0] + "text": "cute anime girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black gold leaf pattern dress and a white apron mouth open placing a fancy black forest cake with candles on top of a dinner table of an old dark Victorian mansion lit by candlelight with a bright window to the foggy forest and very expensive stuff everywhere there are paintings on the walls", + "clip": ["30", 1] }, - "class_type": "KSampler" + "class_type": "CLIPTextEncode", + "_meta": { + "title": "CLIP Text Encode (Positive Prompt)" + } }, - "4": { + "8": { "inputs": { - "ckpt_name": "sd_xl_base_1.0.safetensors" + "samples": ["31", 0], + "vae": ["30", 2] }, - "class_type": "CheckpointLoaderSimple" + "class_type": "VAEDecode", + "_meta": { + "title": "VAE Decode" + } }, - "5": { + "9": { + "inputs": { + "filename_prefix": "ComfyUI", + "images": ["8", 0] + }, + "class_type": "SaveImage", + "_meta": { + "title": "Save Image" + } + }, + "27": { "inputs": { "width": 512, "height": 512, "batch_size": 1 }, - "class_type": "EmptyLatentImage" + "class_type": "EmptySD3LatentImage", + "_meta": { + "title": "EmptySD3LatentImage" + } }, - "6": { + "30": { "inputs": { - "text": "beautiful scenery nature glass bottle landscape, purple galaxy bottle,", - "clip": ["4", 1] + "ckpt_name": "flux1-dev-fp8.safetensors" }, - "class_type": "CLIPTextEncode" + "class_type": "CheckpointLoaderSimple", + "_meta": { + "title": "Load Checkpoint" + } }, - "7": { + "31": { "inputs": { - "text": "text, watermark", - "clip": ["4", 1] + "seed": 1231231213123, + "steps": 10, + "cfg": 1, + "sampler_name": "euler", + "scheduler": "simple", + "denoise": 1, + "model": ["30", 0], + "positive": ["35", 0], + "negative": ["33", 0], + "latent_image": ["27", 0] }, - "class_type": "CLIPTextEncode" + "class_type": "KSampler", + "_meta": { + "title": "KSampler" + } }, - "8": { + "33": { "inputs": { - "samples": ["3", 0], - "vae": ["4", 2] + "text": "", + "clip": ["30", 1] }, - "class_type": "VAEDecode" + "class_type": "CLIPTextEncode", + "_meta": { + "title": "CLIP Text Encode (Negative Prompt)" + } }, - "9": { + "35": { + "inputs": { + "guidance": 3.5, + "conditioning": ["6", 0] + }, + "class_type": "FluxGuidance", + "_meta": { + "title": "FluxGuidance" + } + }, + "38": { + "inputs": { + "images": ["8", 0] + }, + "class_type": "PreviewImage", + "_meta": { + "title": "Preview Image" + } + }, + "40": { "inputs": { - "filename_prefix": "ComfyUI/test", + "filename_prefix": "ComfyUI", "images": ["8", 0] }, - "class_type": "SaveImage" + "class_type": "SaveImage", + "_meta": { + "title": "Save Image" + } } } } diff --git a/test_resources/workflows/flux_dev_checkpoint_example.json b/test_resources/workflows/flux_dev_checkpoint_example.json new file mode 100644 index 00000000..6db1b0d8 --- /dev/null +++ b/test_resources/workflows/flux_dev_checkpoint_example.json @@ -0,0 +1,120 @@ +{ + "6": { + "inputs": { + "text": "cute anime girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black gold leaf pattern dress and a white apron mouth open placing a fancy black forest cake with candles on top of a dinner table of an old dark Victorian mansion lit by candlelight with a bright window to the foggy forest and very expensive stuff everywhere there are paintings on the walls", + "clip": [ + "30", + 1 + ] + }, + "class_type": "CLIPTextEncode", + "_meta": { + "title": "CLIP Text Encode (Positive Prompt)" + } + }, + "8": { + "inputs": { + "samples": [ + "31", + 0 + ], + "vae": [ + "30", + 2 + ] + }, + "class_type": "VAEDecode", + "_meta": { + "title": "VAE Decode" + } + }, + "9": { + "inputs": { + "filename_prefix": "ComfyUI", + "images": [ + "8", + 0 + ] + }, + "class_type": "SaveImage", + "_meta": { + "title": "Save Image" + } + }, + "27": { + "inputs": { + "width": 512, + "height": 512, + "batch_size": 1 + }, + "class_type": "EmptySD3LatentImage", + "_meta": { + "title": "EmptySD3LatentImage" + } + }, + "30": { + "inputs": { + "ckpt_name": "flux1-dev-fp8.safetensors" + }, + "class_type": "CheckpointLoaderSimple", + "_meta": { + "title": "Load Checkpoint" + } + }, + "31": { + "inputs": { + "seed": 150959564782347, + "steps": 10, + "cfg": 1, + "sampler_name": "euler", + "scheduler": "simple", + "denoise": 1, + "model": [ + "30", + 0 + ], + "positive": [ + "35", + 0 + ], + "negative": [ + "33", + 0 + ], + "latent_image": [ + "27", + 0 + ] + }, + "class_type": "KSampler", + "_meta": { + "title": "KSampler" + } + }, + "33": { + "inputs": { + "text": "", + "clip": [ + "30", + 1 + ] + }, + "class_type": "CLIPTextEncode", + "_meta": { + "title": "CLIP Text Encode (Negative Prompt)" + } + }, + "35": { + "inputs": { + "guidance": 3.5, + "conditioning": [ + "6", + 0 + ] + }, + "class_type": "FluxGuidance", + "_meta": { + "title": "FluxGuidance" + } + } +} \ No newline at end of file diff --git a/tests/test_rp_handler.py b/tests/test_handler.py similarity index 79% rename from tests/test_rp_handler.py rename to tests/test_handler.py index 34cfaab0..33efcaa9 100644 --- a/tests/test_rp_handler.py +++ b/tests/test_handler.py @@ -5,9 +5,9 @@ import json import base64 -# Make sure that "src" is known and can be used to import rp_handler.py +# Make sure that "src" is known and can be used to import handler.py sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src"))) -from src import rp_handler +from src import handler # Local folder for test resources RUNPOD_WORKER_COMFY_TEST_RESOURCES_IMAGES = "./test_resources/images" @@ -16,7 +16,7 @@ class TestRunpodWorkerComfy(unittest.TestCase): def test_valid_input_with_workflow_only(self): input_data = {"workflow": {"key": "value"}} - validated_data, error = rp_handler.validate_input(input_data) + validated_data, error = handler.validate_input(input_data) self.assertIsNone(error) self.assertEqual(validated_data, {"workflow": {"key": "value"}, "images": None}) @@ -25,13 +25,13 @@ def test_valid_input_with_workflow_and_images(self): "workflow": {"key": "value"}, "images": [{"name": "image1.png", "image": "base64string"}], } - validated_data, error = rp_handler.validate_input(input_data) + validated_data, error = handler.validate_input(input_data) self.assertIsNone(error) self.assertEqual(validated_data, input_data) def test_input_missing_workflow(self): input_data = {"images": [{"name": "image1.png", "image": "base64string"}]} - validated_data, error = rp_handler.validate_input(input_data) + validated_data, error = handler.validate_input(input_data) self.assertIsNotNone(error) self.assertEqual(error, "Missing 'workflow' parameter") @@ -40,7 +40,7 @@ def test_input_with_invalid_images_structure(self): "workflow": {"key": "value"}, "images": [{"name": "image1.png"}], # Missing 'image' key } - validated_data, error = rp_handler.validate_input(input_data) + validated_data, error = handler.validate_input(input_data) self.assertIsNotNone(error) self.assertEqual( error, "'images' must be a list of objects with 'name' and 'image' keys" @@ -48,46 +48,46 @@ def test_input_with_invalid_images_structure(self): def test_invalid_json_string_input(self): input_data = "invalid json" - validated_data, error = rp_handler.validate_input(input_data) + validated_data, error = handler.validate_input(input_data) self.assertIsNotNone(error) self.assertEqual(error, "Invalid JSON format in input") def test_valid_json_string_input(self): input_data = '{"workflow": {"key": "value"}}' - validated_data, error = rp_handler.validate_input(input_data) + validated_data, error = handler.validate_input(input_data) self.assertIsNone(error) self.assertEqual(validated_data, {"workflow": {"key": "value"}, "images": None}) def test_empty_input(self): input_data = None - validated_data, error = rp_handler.validate_input(input_data) + validated_data, error = handler.validate_input(input_data) self.assertIsNotNone(error) self.assertEqual(error, "Please provide input") - @patch("rp_handler.requests.get") + @patch("handler.requests.get") def test_check_server_server_up(self, mock_requests): mock_response = MagicMock() mock_response.status_code = 200 mock_requests.return_value = mock_response - result = rp_handler.check_server("http://127.0.0.1:8188", 1, 50) + result = handler.check_server("http://127.0.0.1:8188", 1, 50) self.assertTrue(result) - @patch("rp_handler.requests.get") + @patch("handler.requests.get") def test_check_server_server_down(self, mock_requests): - mock_requests.get.side_effect = rp_handler.requests.RequestException() - result = rp_handler.check_server("http://127.0.0.1:8188", 1, 50) + mock_requests.get.side_effect = handler.requests.RequestException() + result = handler.check_server("http://127.0.0.1:8188", 1, 50) self.assertFalse(result) - @patch("rp_handler.urllib.request.urlopen") + @patch("handler.urllib.request.urlopen") def test_queue_prompt(self, mock_urlopen): mock_response = MagicMock() mock_response.read.return_value = json.dumps({"prompt_id": "123"}).encode() mock_urlopen.return_value = mock_response - result = rp_handler.queue_workflow({"prompt": "test"}) + result = handler.queue_workflow({"prompt": "test"}) self.assertEqual(result, {"prompt_id": "123"}) - @patch("rp_handler.urllib.request.urlopen") + @patch("handler.urllib.request.urlopen") def test_get_history(self, mock_urlopen): # Mock response data as a JSON string mock_response_data = json.dumps({"key": "value"}).encode("utf-8") @@ -108,7 +108,7 @@ def mock_read(): mock_urlopen.return_value = mock_response # Call the function under test - result = rp_handler.get_history("123") + result = handler.get_history("123") # Assertions self.assertEqual(result, {"key": "value"}) @@ -118,12 +118,12 @@ def mock_read(): def test_base64_encode(self, mock_file): test_data = base64.b64encode(b"test").decode("utf-8") - result = rp_handler.base64_encode("dummy_path") + result = handler.base64_encode("dummy_path") self.assertEqual(result, test_data) - @patch("rp_handler.os.path.exists") - @patch("rp_handler.rp_upload.upload_image") + @patch("handler.os.path.exists") + @patch("handler.rp_upload.upload_image") @patch.dict( os.environ, {"COMFY_OUTPUT_PATH": RUNPOD_WORKER_COMFY_TEST_RESOURCES_IMAGES} ) @@ -136,12 +136,12 @@ def test_bucket_endpoint_not_configured(self, mock_upload_image, mock_exists): } job_id = "123" - result = rp_handler.process_output_images(outputs, job_id) + result = handler.process_output_images(outputs, job_id) self.assertEqual(result["status"], "success") - @patch("rp_handler.os.path.exists") - @patch("rp_handler.rp_upload.upload_image") + @patch("handler.os.path.exists") + @patch("handler.rp_upload.upload_image") @patch.dict( os.environ, { @@ -157,11 +157,15 @@ def test_bucket_endpoint_configured(self, mock_upload_image, mock_exists): mock_upload_image.return_value = "http://example.com/uploaded/image.png" # Define the outputs and job_id for the test - outputs = {"node_id": {"images": [{"filename": "ComfyUI_00001_.png", "subfolder": "test"}]}} + outputs = { + "node_id": { + "images": [{"filename": "ComfyUI_00001_.png", "subfolder": "test"}] + } + } job_id = "123" # Call the function under test - result = rp_handler.process_output_images(outputs, job_id) + result = handler.process_output_images(outputs, job_id) # Assertions self.assertEqual(result["status"], "success") @@ -170,8 +174,8 @@ def test_bucket_endpoint_configured(self, mock_upload_image, mock_exists): job_id, "./test_resources/images/test/ComfyUI_00001_.png" ) - @patch("rp_handler.os.path.exists") - @patch("rp_handler.rp_upload.upload_image") + @patch("handler.os.path.exists") + @patch("handler.rp_upload.upload_image") @patch.dict( os.environ, { @@ -195,13 +199,13 @@ def test_bucket_image_upload_fails_env_vars_wrong_or_missing( } job_id = "123" - result = rp_handler.process_output_images(outputs, job_id) + result = handler.process_output_images(outputs, job_id) # Check if the image was saved to the 'simulated_uploaded' directory self.assertIn("simulated_uploaded", result["message"]) self.assertEqual(result["status"], "success") - @patch("rp_handler.requests.post") + @patch("handler.requests.post") def test_upload_images_successful(self, mock_post): mock_response = unittest.mock.Mock() mock_response.status_code = 200 @@ -212,12 +216,12 @@ def test_upload_images_successful(self, mock_post): images = [{"name": "test_image.png", "image": test_image_data}] - responses = rp_handler.upload_images(images) + responses = handler.upload_images(images) self.assertEqual(len(responses), 3) self.assertEqual(responses["status"], "success") - @patch("rp_handler.requests.post") + @patch("handler.requests.post") def test_upload_images_failed(self, mock_post): mock_response = unittest.mock.Mock() mock_response.status_code = 400 @@ -228,7 +232,7 @@ def test_upload_images_failed(self, mock_post): images = [{"name": "test_image.png", "image": test_image_data}] - responses = rp_handler.upload_images(images) + responses = handler.upload_images(images) self.assertEqual(len(responses), 3) self.assertEqual(responses["status"], "error")