-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3. NMI train.py
128 lines (98 loc) · 3.86 KB
/
3. NMI train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split
import os
def read_dataset():
df = pd.read_csv(os.getcwd() + "/dataset_40_sonar.csv")
X = df[df.columns[0:60]].values
Y = df[df.columns[60]]
encode = LabelEncoder()
encode.fit(Y)
Y = encode.transform(Y)
Y = one_hot_encode(Y)
return (X,Y)
def one_hot_encode(labels):
n_labels=len(labels)
n_unique_labels=len(np.unique(labels))
one_hot_encode=np.zeros((n_labels,n_unique_labels))
one_hot_encode[np.arange(n_labels), labels]=1
return one_hot_encode
X, Y=read_dataset()
X, Y=shuffle(X, Y,random_state=1)
train_x,test_x,train_y,test_y = train_test_split(X, Y,test_size=0.20,random_state=415)
print(train_x.shape)
print(train_y.shape)
print(test_x.shape)
print(test_y.shape)
print(Y.shape)
# Important parameter and variables to work with tensors
learning_rate=0.3
training_epochs=1000
cost_history = np.empty(shape=[1], dtype=float)
n_dim = X.shape[1]
print("n_dim= ",n_dim)
n_class = 2
model_path =os.getcwd() + "SAVENMI/NMI"
# Define the number of layers and number of neurons for each layer
n_hidden_1 = 60
n_hidden_2 = 60
n_hidden_3 = 60
n_hidden_4 = 60
x = tf.placeholder(tf.float32,[None,n_dim])
y_ = tf.placeholder(tf.float32,[None,n_class])
w = tf.Variable(tf.zeros([n_dim,n_class]))
b = tf.Variable(tf.zeros(n_class))
weigths = {
'h1': tf.Variable(tf.truncated_normal([n_dim, n_hidden_1])),
'h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3])),
'h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4])),
'out': tf.Variable(tf.truncated_normal([n_hidden_4, n_class]))
}
biases = {
'b1': tf.Variable(tf.truncated_normal([n_hidden_1])),
'b2': tf.Variable(tf.truncated_normal([n_hidden_2])),
'b3': tf.Variable(tf.truncated_normal([n_hidden_3])),
'b4': tf.Variable(tf.truncated_normal([n_hidden_4])),
'out': tf.Variable(tf.truncated_normal([n_class]))
}
#define our model
def multilayer_perceptron(x,weigths,biases):
layer_1 = tf.add(tf.matmul(x, weigths['h1']), biases['b1'])
layer_1 = tf.nn.sigmoid(layer_1)
layer_2 = tf.add(tf.matmul(layer_1, weigths['h2']), biases['b2'])
layer_2 = tf.nn.sigmoid(layer_2)
layer_3 = tf.add(tf.matmul(layer_2, weigths['h3']), biases['b3'])
layer_3 = tf.nn.sigmoid(layer_3)
layer_4 = tf.add(tf.matmul(layer_3, weigths['h4']), biases['b4'])
layer_4 = tf.nn.relu(layer_4)
out_layer = tf.matmul(layer_4, weigths['out']) + biases['out']
return out_layer
init = tf.global_variables_initializer()
saver = tf.train.Saver()
y = multilayer_perceptron(x,weigths,biases)
cost_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y,labels=y_))
training_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)
sess = tf.Session()
sess.run(init)
mse_history = []
accuracy_history = []
for epoch in range(training_epochs):
sess.run(training_step, feed_dict = {x:train_x, y_:train_y})
cost = sess.run(cost_function, feed_dict = {x:train_x, y_:train_y})
cost_history = np.append(cost_history, cost)
correct_prediction = tf.equal(tf.arg_max(y,1), tf.arg_max(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
accuracy = sess.run(accuracy, feed_dict = {x: train_x, y_:train_y})
accuracy_history.append(accuracy)
pred_y = sess.run(y, feed_dict={x:test_x})
mse = tf.reduce_mean(tf.square(pred_y - test_y))
mse_ = sess.run(mse)
mse_history.append(mse_)
print('epoch= ',epoch,' cost=',cost,' mse=',mse_,' Train_accuracy=',accuracy)
save_path = saver.save(sess,model_path)
print('Model Saved in file : ',save_path)