Skip to content

Commit 7c7c502

Browse files
committed
fix weaker-stronger word flip
1 parent 81e7a97 commit 7c7c502

File tree

3 files changed

+16
-3
lines changed

3 files changed

+16
-3
lines changed

ERRATA/README.md

+13
Original file line numberDiff line numberDiff line change
@@ -80,6 +80,19 @@ The doc strings of the LogisticRegressionGD classifier reference "Mean squared e
8080

8181
A larger gamma value should create a smaller (not larger) radius.
8282

83+
 
84+
## Chapter 4
85+
86+
In the code block, it says
87+
88+
```python
89+
# Note that C=1.0 is the default. You can increase
90+
# or decrease it to make the regulariztion effect
91+
# stronger or weaker, respectively.
92+
```
93+
94+
But should have been "weaker or stronger" not "stronger or weaker"
95+
8396
 
8497
## Chapter 11
8598

ch04/ch04.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -2312,7 +2312,7 @@
23122312
"lr = LogisticRegression(penalty='l1', C=1.0, solver='liblinear', multi_class='ovr')\n",
23132313
"# Note that C=1.0 is the default. You can increase\n",
23142314
"# or decrease it to make the regulariztion effect\n",
2315-
"# stronger or weaker, respectively.\n",
2315+
"# weaker or stronger, respectively.\n",
23162316
"lr.fit(X_train_std, y_train)\n",
23172317
"print('Training accuracy:', lr.score(X_train_std, y_train))\n",
23182318
"print('Test accuracy:', lr.score(X_test_std, y_test))"
@@ -2837,7 +2837,7 @@
28372837
"name": "python",
28382838
"nbconvert_exporter": "python",
28392839
"pygments_lexer": "ipython3",
2840-
"version": "3.8.12"
2840+
"version": "3.10.6"
28412841
},
28422842
"toc": {
28432843
"nav_menu": {},

ch04/ch04.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -460,7 +460,7 @@
460460
lr = LogisticRegression(penalty='l1', C=1.0, solver='liblinear', multi_class='ovr')
461461
# Note that C=1.0 is the default. You can increase
462462
# or decrease it to make the regulariztion effect
463-
# stronger or weaker, respectively.
463+
# weaker or stronger, respectively.
464464
lr.fit(X_train_std, y_train)
465465
print('Training accuracy:', lr.score(X_train_std, y_train))
466466
print('Test accuracy:', lr.score(X_test_std, y_test))

0 commit comments

Comments
 (0)