|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Machine Learning - Linear Regression" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 2, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "from pyspark.sql import SparkSession\n", |
| 17 | + "\n", |
| 18 | + "from pyspark.ml.feature import VectorAssembler\n", |
| 19 | + "from pyspark.ml.regression import LinearRegression" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 3, |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "spark = SparkSession.builder.getOrCreate()" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": 4, |
| 34 | + "metadata": {}, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "data_path = '../Data'\n", |
| 38 | + "file_path = data_path + '/utilization.csv'" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": 5, |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "df = spark.read.format('csv').options(header=False, inferSchema=True).load(file_path)\n", |
| 48 | + "\n", |
| 49 | + "# rename columns\n", |
| 50 | + "df = df.withColumnRenamed('_c0', 'event_datetime')\\\n", |
| 51 | + " .withColumnRenamed('_c1', 'server_id')\\\n", |
| 52 | + " .withColumnRenamed('_c2', 'cpu_utilization')\\\n", |
| 53 | + " .withColumnRenamed('_c3', 'free_memory')\\\n", |
| 54 | + " .withColumnRenamed('_c4', 'session_count')" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 6, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [ |
| 62 | + { |
| 63 | + "name": "stdout", |
| 64 | + "output_type": "stream", |
| 65 | + "text": [ |
| 66 | + "+-------------------+---------+---------------+-----------+-------------+\n", |
| 67 | + "| event_datetime|server_id|cpu_utilization|free_memory|session_count|\n", |
| 68 | + "+-------------------+---------+---------------+-----------+-------------+\n", |
| 69 | + "|03/05/2019 08:06:14| 100| 0.57| 0.51| 47|\n", |
| 70 | + "|03/05/2019 08:11:14| 100| 0.47| 0.62| 43|\n", |
| 71 | + "|03/05/2019 08:16:14| 100| 0.56| 0.57| 62|\n", |
| 72 | + "|03/05/2019 08:21:14| 100| 0.57| 0.56| 50|\n", |
| 73 | + "|03/05/2019 08:26:14| 100| 0.35| 0.46| 43|\n", |
| 74 | + "+-------------------+---------+---------------+-----------+-------------+\n", |
| 75 | + "only showing top 5 rows\n", |
| 76 | + "\n" |
| 77 | + ] |
| 78 | + } |
| 79 | + ], |
| 80 | + "source": [ |
| 81 | + "df.show(5)" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "markdown", |
| 86 | + "metadata": {}, |
| 87 | + "source": [ |
| 88 | + "---------" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "markdown", |
| 93 | + "metadata": {}, |
| 94 | + "source": [ |
| 95 | + "# Vectorizing Features, tranform using VectorAssembler" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": 7, |
| 101 | + "metadata": {}, |
| 102 | + "outputs": [], |
| 103 | + "source": [ |
| 104 | + "vector_assembler = VectorAssembler(inputCols=['cpu_utilization'], outputCol='features')" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 8, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "df_vutil = vector_assembler.transform(df)" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "code", |
| 118 | + "execution_count": 9, |
| 119 | + "metadata": {}, |
| 120 | + "outputs": [ |
| 121 | + { |
| 122 | + "name": "stdout", |
| 123 | + "output_type": "stream", |
| 124 | + "text": [ |
| 125 | + "+-------------------+---------+---------------+-----------+-------------+--------+\n", |
| 126 | + "| event_datetime|server_id|cpu_utilization|free_memory|session_count|features|\n", |
| 127 | + "+-------------------+---------+---------------+-----------+-------------+--------+\n", |
| 128 | + "|03/05/2019 08:06:14| 100| 0.57| 0.51| 47| [0.57]|\n", |
| 129 | + "|03/05/2019 08:11:14| 100| 0.47| 0.62| 43| [0.47]|\n", |
| 130 | + "|03/05/2019 08:16:14| 100| 0.56| 0.57| 62| [0.56]|\n", |
| 131 | + "|03/05/2019 08:21:14| 100| 0.57| 0.56| 50| [0.57]|\n", |
| 132 | + "|03/05/2019 08:26:14| 100| 0.35| 0.46| 43| [0.35]|\n", |
| 133 | + "+-------------------+---------+---------------+-----------+-------------+--------+\n", |
| 134 | + "only showing top 5 rows\n", |
| 135 | + "\n" |
| 136 | + ] |
| 137 | + } |
| 138 | + ], |
| 139 | + "source": [ |
| 140 | + "df_vutil.show(5)" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "markdown", |
| 145 | + "metadata": {}, |
| 146 | + "source": [ |
| 147 | + "# Model Creation and Prediction" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": 22, |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "linear_regression = LinearRegression(featuresCol='features', labelCol='session_count')" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": 23, |
| 162 | + "metadata": {}, |
| 163 | + "outputs": [], |
| 164 | + "source": [ |
| 165 | + "lr_model = linear_regression.fit(df_vutil)" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "markdown", |
| 170 | + "metadata": {}, |
| 171 | + "source": [ |
| 172 | + "# Coefficient and Y Intercept" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": 24, |
| 178 | + "metadata": {}, |
| 179 | + "outputs": [ |
| 180 | + { |
| 181 | + "data": { |
| 182 | + "text/plain": [ |
| 183 | + "DenseVector([47.024])" |
| 184 | + ] |
| 185 | + }, |
| 186 | + "execution_count": 24, |
| 187 | + "metadata": {}, |
| 188 | + "output_type": "execute_result" |
| 189 | + } |
| 190 | + ], |
| 191 | + "source": [ |
| 192 | + "lr_model.coefficients" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "code", |
| 197 | + "execution_count": 25, |
| 198 | + "metadata": {}, |
| 199 | + "outputs": [ |
| 200 | + { |
| 201 | + "data": { |
| 202 | + "text/plain": [ |
| 203 | + "40.41695103550495" |
| 204 | + ] |
| 205 | + }, |
| 206 | + "execution_count": 25, |
| 207 | + "metadata": {}, |
| 208 | + "output_type": "execute_result" |
| 209 | + } |
| 210 | + ], |
| 211 | + "source": [ |
| 212 | + "lr_model.intercept" |
| 213 | + ] |
| 214 | + }, |
| 215 | + { |
| 216 | + "cell_type": "markdown", |
| 217 | + "metadata": {}, |
| 218 | + "source": [ |
| 219 | + "# Checking RMSE" |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "code", |
| 224 | + "execution_count": 26, |
| 225 | + "metadata": {}, |
| 226 | + "outputs": [ |
| 227 | + { |
| 228 | + "data": { |
| 229 | + "text/plain": [ |
| 230 | + "12.837990225931527" |
| 231 | + ] |
| 232 | + }, |
| 233 | + "execution_count": 26, |
| 234 | + "metadata": {}, |
| 235 | + "output_type": "execute_result" |
| 236 | + } |
| 237 | + ], |
| 238 | + "source": [ |
| 239 | + "lr_model.summary.rootMeanSquaredError" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "markdown", |
| 244 | + "metadata": {}, |
| 245 | + "source": [ |
| 246 | + "--------" |
| 247 | + ] |
| 248 | + } |
| 249 | + ], |
| 250 | + "metadata": { |
| 251 | + "kernelspec": { |
| 252 | + "display_name": "venv-datascience", |
| 253 | + "language": "python", |
| 254 | + "name": "venv-datascience" |
| 255 | + }, |
| 256 | + "language_info": { |
| 257 | + "codemirror_mode": { |
| 258 | + "name": "ipython", |
| 259 | + "version": 3 |
| 260 | + }, |
| 261 | + "file_extension": ".py", |
| 262 | + "mimetype": "text/x-python", |
| 263 | + "name": "python", |
| 264 | + "nbconvert_exporter": "python", |
| 265 | + "pygments_lexer": "ipython3", |
| 266 | + "version": "3.8.5" |
| 267 | + } |
| 268 | + }, |
| 269 | + "nbformat": 4, |
| 270 | + "nbformat_minor": 4 |
| 271 | +} |
0 commit comments