@@ -12,44 +12,60 @@ def get_data(long, lat, start_date, end_date):
12
12
13
13
Map = geemap .Map ()
14
14
15
- geometry1 = ee .Geometry .Point ([long ,lat ])
15
+ # geometry1 = ee.Geometry.Point([long,lat])
16
16
17
17
#start_date = '2021-01-01'
18
18
#end_date = '2021-06-30'
19
19
20
20
# Kankaria Lake, Ahmedabad
21
21
22
22
# geometry1 = ee.Geometry.Point([72.6026,23.0063])
23
-
24
- geometry = ee .Geometry .Polygon ([
25
- [72.5986408493042 ,23.006549566021803 ],
26
- [72.59902708740235 ,23.004890477468116 ],
27
- [72.60070078582764 ,23.003863412427236 ],
28
- [72.60040037841797 ,23.007142092704626 ],
29
- [72.60215990753174 ,23.006668071566512 ],
30
- [72.60173075408936 ,23.003784407100333 ],
31
- [72.60366194458008 ,23.00516699364359 ],
32
- [72.60374777526856 ,23.00686558057643 ],
33
- [72.6026748916626 ,23.00805062856477 ],
34
- [72.60082953186036 ,23.00880115357416 ],
35
- [72.59945624084473 ,23.00809012998513 ],
36
- [72.5986408493042 ,23.006549566021803 ],
37
- [72.5986408493042 ,23.006549566021803 ],
38
- [72.59902708740235 ,23.004890477468116 ],
39
- [72.60070078582764 ,23.003863412427236 ],
40
- [72.60040037841797 ,23.007142092704626 ],
41
- [72.60215990753174 ,23.006668071566512 ],
42
- [72.60173075408936 ,23.003784407100333 ],
43
- [72.60366194458008 ,23.00516699364359 ],
44
- [72.60374777526856 ,23.00686558057643 ],
45
- [72.6026748916626 ,23.00805062856477 ],
46
- [72.60082953186036 ,23.00880115357416 ],
47
- [72.59945624084473 ,23.00809012998513 ],
48
- [72.5986408493042 ,23.006549566021803 ]
49
- ])
50
-
51
- Map .addLayer (geometry1 )
52
- sentinel = ee .ImageCollection ("COPERNICUS/S2_SR" ).filterBounds (geometry ) \
23
+ geometry = ee .Geometry .Point ([long ,lat ])
24
+ image = ee .ImageCollection ("COPERNICUS/S2_SR" ) \
25
+ .filterBounds (geometry ) \
26
+ .filter (ee .Filter .lte ('CLOUDY_PIXEL_PERCENTAGE' ,20 )) \
27
+ .first ()
28
+ # Create an NDWI image, define visualization parameters and display.
29
+ ndwi = image .normalizedDifference (['B3' , 'B8' ])
30
+ # Mask the non-watery parts of the image, where NDWI < 0.4.
31
+ ndwiMasked = ndwi .updateMask (ndwi .gte (0.4 ))
32
+ ndwiMasked1 = ndwiMasked .toInt ()
33
+ # vectors = ndwiMasked1.reduceToVectors({
34
+ # 'scale': 30.0,
35
+ # 'geometryType': 'polygon',
36
+ # 'eightConnected': False,
37
+ # 'maxPixels':10000000
38
+ # })
39
+ vectors = ndwiMasked1 .reduceToVectors (scale = 30.0 , geometryType = 'polygon' , eightConnected = False , maxPixels = 10000000 , bestEffort = True )
40
+ # geometry = ee.Geometry.Polygon([
41
+ # [72.5986408493042,23.006549566021803],
42
+ # [72.59902708740235,23.004890477468116],
43
+ # [72.60070078582764,23.003863412427236],
44
+ # [72.60040037841797,23.007142092704626],
45
+ # [72.60215990753174,23.006668071566512],
46
+ # [72.60173075408936,23.003784407100333],
47
+ # [72.60366194458008,23.00516699364359],
48
+ # [72.60374777526856,23.00686558057643],
49
+ # [72.6026748916626,23.00805062856477],
50
+ # [72.60082953186036,23.00880115357416],
51
+ # [72.59945624084473,23.00809012998513],
52
+ # [72.5986408493042,23.006549566021803],
53
+ # [72.5986408493042,23.006549566021803],
54
+ # [72.59902708740235,23.004890477468116],
55
+ # [72.60070078582764,23.003863412427236],
56
+ # [72.60040037841797,23.007142092704626],
57
+ # [72.60215990753174,23.006668071566512],
58
+ # [72.60173075408936,23.003784407100333],
59
+ # [72.60366194458008,23.00516699364359],
60
+ # [72.60374777526856,23.00686558057643],
61
+ # [72.6026748916626,23.00805062856477],
62
+ # [72.60082953186036,23.00880115357416],
63
+ # [72.59945624084473,23.00809012998513],
64
+ # [72.5986408493042,23.006549566021803]
65
+ # ])
66
+
67
+ Map .addLayer (geometry )
68
+ sentinel = ee .ImageCollection ("COPERNICUS/S2_SR" ).filterBounds (vectors ) \
53
69
.filterDate (start_date ,end_date ) \
54
70
.filter (ee .Filter .lt ('CLOUDY_PIXEL_PERCENTAGE' ,20 )) \
55
71
.median ()
@@ -87,7 +103,7 @@ def get_data(long, lat, start_date, end_date):
87
103
88
104
col = ee .ImageCollection ('LANDSAT/LC08/C02/T1_L2' ) \
89
105
.filterDate (start_date ,end_date ) \
90
- .filterBounds (geometry ).median ()
106
+ .filterBounds (vectors ).median ()
91
107
92
108
temp = col .select ('ST_B.*' ).multiply (0.00341802 ).add (149.0 ).subtract (273.15 ).rename ('temp' )
93
109
@@ -98,10 +114,10 @@ def get_data(long, lat, start_date, end_date):
98
114
starting = start_date
99
115
ending = end_date
100
116
101
- data = ee .ImageCollection ('COPERNICUS/S3/OLCI' ).filterDate (starting , ending ).filterBounds (geometry )
117
+ data = ee .ImageCollection ('COPERNICUS/S3/OLCI' ).filterDate (starting , ending ).filterBounds (vectors )
102
118
103
119
rgb = data .select (['Oa08_radiance' , 'Oa06_radiance' , 'Oa04_radiance' ])\
104
- .median ().multiply (ee .Image ([0.00876539 , 0.0123538 , 0.0115198 ])).clip (geometry )
120
+ .median ().multiply (ee .Image ([0.00876539 , 0.0123538 , 0.0115198 ])).clip (vectors )
105
121
dm_2021_Jan_August_test = rgb .select ('Oa08_radiance' ).divide (rgb .select ('Oa04_radiance' )).rename ('dom' )
106
122
dom2 = rgb .select ('Oa08_radiance' ).divide (rgb .select ('Oa04_radiance' )).mask (mndwitr )
107
123
Map .addLayer (dom2 ,{'min' :0 ,'max' :0.8 ,'palette' :['green' ,'red' ,'yellow' ]},'Dissolved organic matter' )
@@ -118,7 +134,7 @@ def get_data(long, lat, start_date, end_date):
118
134
# apply reducer to list
119
135
latlon = latlon .reduceRegion (
120
136
reducer = ee .Reducer .toList (),
121
- geometry = geometry ,
137
+ geometry = vectors ,
122
138
scale = 100 ,
123
139
tileScale = 16 )
124
140
# get data into three different arrays
@@ -129,7 +145,7 @@ def get_data(long, lat, start_date, end_date):
129
145
# apply reducer to list
130
146
latlon = latlon .reduceRegion (
131
147
reducer = ee .Reducer .toList (),
132
- geometry = geometry ,
148
+ geometry = vectors ,
133
149
scale = 100 ,
134
150
tileScale = 16 )
135
151
# get data into three different arrays
@@ -140,7 +156,7 @@ def get_data(long, lat, start_date, end_date):
140
156
141
157
latlon = latlon .reduceRegion (
142
158
reducer = ee .Reducer .toList (),
143
- geometry = geometry ,
159
+ geometry = vectors ,
144
160
scale = 100 )
145
161
146
162
data_lst = np .array ((ee .Array (latlon .get ("temp" )).getInfo ()))
@@ -150,7 +166,7 @@ def get_data(long, lat, start_date, end_date):
150
166
# apply reducer to list
151
167
latlon = latlon .reduceRegion (
152
168
reducer = ee .Reducer .toList (),
153
- geometry = geometry ,
169
+ geometry = vectors ,
154
170
scale = 100 )
155
171
# get data into three different arrays
156
172
data_ndti = np .array ((ee .Array (latlon .get ("ndti" )).getInfo ()))
@@ -159,7 +175,7 @@ def get_data(long, lat, start_date, end_date):
159
175
# apply reducer to list
160
176
latlon = latlon .reduceRegion (
161
177
reducer = ee .Reducer .toList (),
162
- geometry = geometry ,
178
+ geometry = vectors ,
163
179
scale = 100 )
164
180
# get data into three different arrays
165
181
data_ndsi = np .array ((ee .Array (latlon .get ("ndsi" )).getInfo ()))
@@ -168,7 +184,7 @@ def get_data(long, lat, start_date, end_date):
168
184
# apply reducer to list
169
185
latlon = latlon .reduceRegion (
170
186
reducer = ee .Reducer .toList (),
171
- geometry = geometry ,
187
+ geometry = vectors ,
172
188
scale = 100 )
173
189
# get data into three different arrays
174
190
data_ndci = np .array ((ee .Array (latlon .get ("ndci" )).getInfo ()))
@@ -177,7 +193,7 @@ def get_data(long, lat, start_date, end_date):
177
193
# apply reducer to list
178
194
latlon = latlon .reduceRegion (
179
195
reducer = ee .Reducer .toList (),
180
- geometry = geometry ,
196
+ geometry = vectors ,
181
197
scale = 100 ,
182
198
tileScale = 16 )
183
199
# get data into three different arrays
@@ -187,7 +203,7 @@ def get_data(long, lat, start_date, end_date):
187
203
# apply reducer to list
188
204
latlon = latlon .reduceRegion (
189
205
reducer = ee .Reducer .toList (),
190
- geometry = geometry ,
206
+ geometry = vectors ,
191
207
scale = 100 )
192
208
# get data into three different arrays
193
209
data_ph = np .array ((ee .Array (latlon .get ("ph" )).getInfo ()))
0 commit comments