You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+20-20Lines changed: 20 additions & 20 deletions
Original file line number
Diff line number
Diff line change
@@ -15,22 +15,22 @@ OpenVINO™ Model Server (OVMS) is a high-performance system for serving mod
15
15
16
16

17
17
18
-
The models used by the server need to be stored locally or hosted remotely by object storage services. For more details, refer to [Preparing Model Repository](https://docs.openvino.ai/nightly/ovms_docs_models_repository.html) documentation. Model server works inside [Docker containers](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html#deploying-model-server-in-docker-container), on [Bare Metal](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html#deploying-model-server-on-baremetal-without-container), and in [Kubernetes environment](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html#deploying-model-server-in-kubernetes).
19
-
Start using OpenVINO Model Server with a fast-forward serving example from the [Quickstart guide](https://docs.openvino.ai/nightly/ovms_docs_quick_start_guide.html) or explore [Model Server features](https://docs.openvino.ai/nightly/ovms_docs_features.html).
18
+
The models used by the server need to be stored locally or hosted remotely by object storage services. For more details, refer to [Preparing Model Repository](https://docs.openvino.ai/2024/ovms_docs_models_repository.html) documentation. Model server works inside [Docker containers](https://docs.openvino.ai/2024/ovms_docs_deploying_server.html#deploying-model-server-in-docker-container), on [Bare Metal](https://docs.openvino.ai/2024/ovms_docs_deploying_server.html#deploying-model-server-on-baremetal-without-container), and in [Kubernetes environment](https://docs.openvino.ai/2024/ovms_docs_deploying_server.html#deploying-model-server-in-kubernetes).
19
+
Start using OpenVINO Model Server with a fast-forward serving example from the [Quickstart guide](https://docs.openvino.ai/2024/ovms_docs_quick_start_guide.html) or explore [Model Server features](https://docs.openvino.ai/2024/ovms_docs_features.html).
20
20
21
21
Read [release notes](https://github.com/openvinotoolkit/model_server/releases) to find out what’s new.
22
22
23
23
### Key features:
24
-
-**[NEW]**[Efficient Text Generation via OpenAI API](https://docs.openvino.ai/nightly/ovms_docs_llm_reference.html)
- Model management - including [model versioning](https://docs.openvino.ai/nightly/ovms_docs_model_version_policy.html) and [model updates in runtime](https://docs.openvino.ai/nightly/ovms_docs_online_config_changes.html)
29
-
-[Dynamic model inputs](https://docs.openvino.ai/nightly/ovms_docs_shape_batch_layout.html)
30
-
-[Directed Acyclic Graph Scheduler](https://docs.openvino.ai/nightly/ovms_docs_dag.html) along with [custom nodes in DAG pipelines](https://docs.openvino.ai/nightly/ovms_docs_custom_node_development.html)
31
-
-[Metrics](https://docs.openvino.ai/nightly/ovms_docs_metrics.html) - metrics compatible with Prometheus standard
24
+
-**[NEW]**[Efficient Text Generation via OpenAI API](https://docs.openvino.ai/2024/ovms_docs_llm_reference.html)
- Model management - including [model versioning](https://docs.openvino.ai/2024/ovms_docs_model_version_policy.html) and [model updates in runtime](https://docs.openvino.ai/2024/ovms_docs_online_config_changes.html)
29
+
-[Dynamic model inputs](https://docs.openvino.ai/2024/ovms_docs_shape_batch_layout.html)
30
+
-[Directed Acyclic Graph Scheduler](https://docs.openvino.ai/2024/ovms_docs_dag.html) along with [custom nodes in DAG pipelines](https://docs.openvino.ai/2024/ovms_docs_custom_node_development.html)
31
+
-[Metrics](https://docs.openvino.ai/2024/ovms_docs_metrics.html) - metrics compatible with Prometheus standard
32
32
- Support for multiple frameworks, such as TensorFlow, PaddlePaddle and ONNX
33
-
- Support for [AI accelerators](https://docs.openvino.ai/nightly/about-openvino/compatibility-and-support/supported-devices.html)
33
+
- Support for [AI accelerators](https://docs.openvino.ai/2024/about-openvino/compatibility-and-support/supported-devices.html)
34
34
35
35
**Note:** OVMS has been tested on RedHat, and Ubuntu. The latest publicly released docker images are based on Ubuntu and UBI.
36
36
They are stored in:
@@ -40,26 +40,26 @@ They are stored in:
40
40
41
41
## Run OpenVINO Model Server
42
42
43
-
A demonstration on how to use OpenVINO Model Server can be found in [our quick-start guide](https://docs.openvino.ai/nightly/ovms_docs_quick_start_guide.html).
43
+
A demonstration on how to use OpenVINO Model Server can be found in [our quick-start guide](https://docs.openvino.ai/2024/ovms_docs_quick_start_guide.html).
44
44
For more information on using Model Server in various scenarios you can check the following guides:
*[Speed and Scale AI Inference Operations Across Multiple Architectures](https://techdecoded.intel.io/essentials/speed-and-scale-ai-inference-operations-across-multiple-architectures/?elq_cid=3646480_ts1607680426276&erpm_id=6470692_ts1607680426276) - webinar recording
Copy file name to clipboardExpand all lines: client/python/ovmsclient/lib/README.md
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -6,7 +6,7 @@ OVMS client library contains only the necessary dependencies, so the whole packa
6
6
7
7
As OpenVINO Model Server API is compatible with TensorFlow Serving, it's possible to use `ovmsclient` with TensorFlow Serving instances on: Predict, GetModelMetadata and GetModelStatus endpoints.
8
8
9
-
See [API documentation](https://github.com/openvinotoolkit/model_server/blob/main/client/python/ovmsclient/lib/docs/README.md) for details on what the library provides.
9
+
See [API documentation](https://github.com/openvinotoolkit/model_server/blob/releases/2024/4/client/python/ovmsclient/lib/docs/README.md) for details on what the library provides.
For more details on `ovmsclient` see [API reference](https://github.com/openvinotoolkit/model_server/blob/main/client/python/ovmsclient/lib/docs/README.md)
139
+
For more details on `ovmsclient` see [API reference](https://github.com/openvinotoolkit/model_server/blob/releases/2024/4/client/python/ovmsclient/lib/docs/README.md)
Copy file name to clipboardExpand all lines: client/python/ovmsclient/lib/docs/pypi_overview.md
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -9,7 +9,7 @@ The `ovmsclient` package works both with OpenVINO™ Model Server and Tensor
9
9
The `ovmsclient` can replace `tensorflow-serving-api` package with reduced footprint and simplified interface.
10
10
11
11
12
-
See [API reference](https://github.com/openvinotoolkit/model_server/blob/main/client/python/ovmsclient/lib/docs/README.md) for usage details.
12
+
See [API reference](https://github.com/openvinotoolkit/model_server/blob/releases/2024/4/client/python/ovmsclient/lib/docs/README.md) for usage details.
Copy file name to clipboardExpand all lines: demos/README.md
+7-7Lines changed: 7 additions & 7 deletions
Original file line number
Diff line number
Diff line change
@@ -42,7 +42,7 @@ ovms_string_output_model_demo
42
42
OpenVINO Model Server demos have been created to showcase the usage of the model server as well as demonstrate it’s capabilities.
43
43
### Check Out New Generative AI Demos
44
44
-[Text Generation with continuous batching](continuous_batching/README.md)
45
-
-[RAG with OpenAI API endpoint and langchain](https://github.com/openvinotoolkit/model_server/blob/main/demos/continuous_batching/rag/rag_demo.ipynb)
45
+
-[RAG with OpenAI API endpoint and langchain](https://github.com/openvinotoolkit/model_server/blob/releases/2024/4/demos/continuous_batching/rag/rag_demo.ipynb)
46
46
47
47
Check out the list below to see complete step-by-step examples of using OpenVINO Model Server with real world use cases:
48
48
@@ -53,23 +53,23 @@ Check out the list below to see complete step-by-step examples of using OpenVINO
53
53
|[CLIP image classification](python_demos/clip_image_classification/README.md)| Classify image according to provided labels using CLIP model embedded in a multi-node MediaPipe graph.|
54
54
|[Seq2seq translation](python_demos/seq2seq_translation/README.md)| Translate text using seq2seq model via gRPC API.|
55
55
|[Age gender recognition](age_gender_recognition/python/README.md)| Run prediction on a JPEG image using age gender recognition model via gRPC API.|
56
-
|[Horizontal Text Detection in Real-Time](horizontal_text_detection/python/README.md)| Run prediction on camera stream using a horizontal text detection model via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [horizontal_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/horizontal_ocr) and [demultiplexer](../docs/demultiplexing.md). |
57
-
|[Optical Character Recognition Pipeline](optical_character_recognition/python/README.md)| Run prediction on a JPEG image using a pipeline of text recognition and text detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [east_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/east_ocr) and [demultiplexer](../docs/demultiplexing.md). |
56
+
|[Horizontal Text Detection in Real-Time](horizontal_text_detection/python/README.md)| Run prediction on camera stream using a horizontal text detection model via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [horizontal_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/horizontal_ocr) and [demultiplexer](../docs/demultiplexing.md). |
57
+
|[Optical Character Recognition Pipeline](optical_character_recognition/python/README.md)| Run prediction on a JPEG image using a pipeline of text recognition and text detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [east_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/east_ocr) and [demultiplexer](../docs/demultiplexing.md). |
58
58
|[Face Detection](face_detection/python/README.md)|Run prediction on a JPEG image using face detection model via gRPC API.|
59
59
|[Single Face Analysis Pipeline](single_face_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a simple pipeline of age-gender recognition and emotion recognition models via gRPC API to analyze image with a single face. This demo uses [pipeline](../docs/dag_scheduler.md)|
60
-
|[Multi Faces Analysis Pipeline](multi_faces_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a pipeline of age-gender recognition and emotion recognition models via gRPC API to extract multiple faces from the image and analyze all of them. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/model_zoo_intel_object_detection) and [demultiplexer](../docs/demultiplexing.md)|
60
+
|[Multi Faces Analysis Pipeline](multi_faces_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a pipeline of age-gender recognition and emotion recognition models via gRPC API to extract multiple faces from the image and analyze all of them. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/model_zoo_intel_object_detection) and [demultiplexer](../docs/demultiplexing.md)|
61
61
|[Model Ensemble Pipeline](model_ensemble/python/README.md)|Combine multiple image classification models into one [pipeline](../docs/dag_scheduler.md) and aggregate results to improve classification accuracy. |
62
62
|[Image Classification](image_classification/python/README.md)|Run prediction on a JPEG image using image classification model via gRPC API.|
63
-
|[Using ONNX Model](using_onnx_model/python/README.md)|Run prediction on a JPEG image using image classification ONNX model via gRPC API in two preprocessing variants. This demo uses [pipeline](../docs/dag_scheduler.md) with [image_transformation custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/image_transformation). |
63
+
|[Using ONNX Model](using_onnx_model/python/README.md)|Run prediction on a JPEG image using image classification ONNX model via gRPC API in two preprocessing variants. This demo uses [pipeline](../docs/dag_scheduler.md) with [image_transformation custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/image_transformation). |
|[Person, Vehicle, Bike Detection](person_vehicle_bike_detection/python/README.md)|Run prediction on a video file or camera stream using person, vehicle, bike detection model via gRPC API.|
66
-
|[Vehicle Analysis Pipeline](vehicle_analysis_pipeline/python/README.md)|Detect vehicles and recognize their attributes using a pipeline of vehicle detection and vehicle attributes recognition models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/model_zoo_intel_object_detection). |
66
+
|[Vehicle Analysis Pipeline](vehicle_analysis_pipeline/python/README.md)|Detect vehicles and recognize their attributes using a pipeline of vehicle detection and vehicle attributes recognition models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/model_zoo_intel_object_detection). |
67
67
|[Real Time Stream Analysis](real_time_stream_analysis/python/README.md)| Analyze RTSP video stream in real time with generic application template for custom pre and post processing routines as well as simple results visualizer for displaying predictions in the browser. |
68
68
|[Classification with PaddlePaddle](classification_using_paddlepaddle_model/python/README.md)| Perform classification on an image with a PaddlePaddle model. |
69
69
|[Natural Language Processing with BERT](bert_question_answering/python/README.md)|Provide a knowledge source and a query and use BERT model for question answering use case via gRPC API. This demo uses dynamic shape feature. |
70
70
|[Using inputs data in string format with universal-sentence-encoder model](universal-sentence-encoder/README.md)| Handling AI model with text as the model input. |
71
71
|[Benchmark App](benchmark/python/README.md)|Generate traffic and measure performance of the model served in OpenVINO Model Server.|
72
-
|[Face Blur Pipeline](face_blur/python/README.md)|Detect faces and blur image using a pipeline of object detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [face_blur custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/face_blur). |
72
+
|[Face Blur Pipeline](face_blur/python/README.md)|Detect faces and blur image using a pipeline of object detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [face_blur custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/face_blur). |
Copy file name to clipboardExpand all lines: demos/age_gender_recognition/python/README.md
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -35,7 +35,7 @@ Install python dependencies:
35
35
```bash
36
36
pip3 install -r requirements.txt
37
37
```
38
-
Run [age_gender_recognition.py](https://github.com/openvinotoolkit/model_server/blob/main/demos/age_gender_recognition/python/age_gender_recognition.py) script to make an inference:
38
+
Run [age_gender_recognition.py](https://github.com/openvinotoolkit/model_server/blob/releases/2024/4/demos/age_gender_recognition/python/age_gender_recognition.py) script to make an inference:
0 commit comments