Skip to content

Advanced LinSolver usage for deflated NEPs #247

Open
@jarlebring

Description

@jarlebring

A common use-case: We have a linear solver (eg gmres) for a nep, and want to carry out deflation. The original linear solver will not directly work for the deflated nep due to the way it is modified. However, it is possible to define your own linear solver for the deflated nep. Since this is a common use-case, I suggest we incorporate this into the package in some way.

Illustration (only works for one deflated pair):

using NonlinearEigenproblems
using LinearAlgebra
import NonlinearEigenproblems.create_linsolver
import NonlinearEigenproblems.lin_solve
mutable struct MyLinSolverCreator <: LinSolverCreator
    orglinsolvercreator
    dnep
end

mutable struct MyLinSolver <: LinSolver
    orglinsolver
    dnep
    λ
end


function create_linsolver(creator::MyLinSolverCreator,dnep,λ)
    orglinsolver=create_linsolver(creator.orglinsolvercreator,
                                  dnep.orgnep,λ);
    return MyLinSolver(orglinsolver,dnep,λ);
end

function lin_solve(solver::MyLinSolver, b::AbstractVecOrMat;tol=0)

    n0=size(solver.dnep.orgnep,1);
    b1=b[1:n0];
    b2=b[(n0+1):end];
    z1=lin_solve(solver.orglinsolver,b1);
    z2=b2;

    # Now use Schur complement, i.e., that 
    # inv([I x1 ; x2' 0])=
    # (1/α)*[(α*I+x1*x2') -x1 ; -x2' 1]
    # where x1=x/(λ-s)
    #       x2=x

    s=solver.dnep.S0[1,1];
    x=solver.dnep.V0[:,1];

    x1=x/(solver.λ-s)
    x2=x;
    α=(-x2'*x1)[1];
    α=(-x2'*x1)[1];
    q1=*z1+x1*(x2'*z1)[1]-x1*z2[1])/α
    q2=(-x2'*z1+z2[1])/α
    return [q1;q2];

end


nep=nep_gallery("dep0");
(λ,v)=newton(nep,v=ones(size(nep,1)));
dnep=deflate_eigpair(nep,λ,v)

# The underlying linsolver:
orglinsolver=BackslashLinSolverCreator();
creator=MyLinSolverCreator(orglinsolver,dnep);
(λ2,v2)=augnewton(dnep,
                  v=ones(size(dnep,1)),
                  linsolvercreator=creator,
                  logger=1);  # this converges to different eigval

Note that the MyLinSolver is a linear solver for the dnep:

julia> zz=0.3;
julia> linsolver=create_linsolver(creator,dnep,zz);
julia> b=randn(size(dnep,1));
julia> @show z_a=lin_solve(linsolver,b)
z_a = lin_solve(linsolver, b) = Complex{Float64}[-0.4101211405863793 - 0.0im, 1.5263830696452803 - 0.0im, 1.6157867977440057 - 0.0im, -1.1376264798061828 - 0.0im, 0.5353383364146362 - 0.0im, -0.5880736961493719 - 0.0im]
6-element Array{Complex{Float64},1}:
 -0.4101211405863793 - 0.0im
  1.5263830696452803 - 0.0im
  1.6157867977440057 - 0.0im
 -1.1376264798061828 - 0.0im
  0.5353383364146362 - 0.0im
 -0.5880736961493719 - 0.0im
julia> @show z_b=compute_Mder(dnep,zz)\b
z_b = compute_Mder(dnep, zz) \ b = Complex{Float64}[-0.4101211405863793 - 0.0im, 1.5263830696452805 + 0.0im, 1.6157867977440055 + 0.0im, -1.1376264798061826 - 0.0im, 0.5353383364146361 + 0.0im, -0.5880736961493715 - 0.0im]
6-element Array{Complex{Float64},1}:
 -0.4101211405863793 - 0.0im
  1.5263830696452805 + 0.0im
  1.6157867977440055 + 0.0im
 -1.1376264798061826 - 0.0im
  0.5353383364146361 + 0.0im
 -0.5880736961493715 - 0.0im

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions