Skip to content

损失值降不下去,无法拟合 #2561

Open
@wanhhe

Description

@wanhhe

❓ Questions and Help

What is your question?

您好,我找了一个1500h的方言数据集在seaco_paraformer上面进行微调,我训练到大概100k step时损失值一直为0.8左右,无法下降,到300k step时损失值有一些下降,但测试结果比之前还要差。这种情况可能是因为什么原因导致的呢?我想可能是数据集质量低或者是比较难学吗,因为我用的类似于客家话的数据集。或者我应该如何去排查比较好?

谢谢您的帮助。

Code

下面是我的训练脚本

workspace=pwd

export CUDA_VISIBLE_DEVICES="0"
gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')

model_name_or_model_dir="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"

${local_path_root}/${model_name_or_model_dir}

data_dir="../../../data/list"

train_data="${data_dir}/my_train.jsonl"
val_data="${data_dir}/my_val.jsonl"

output_dir="./outputs"
log_file="${output_dir}/log.txt"

mkdir -p ${output_dir}
echo "log_file: ${log_file}"

torchrun --nnodes 1 --nproc_per_node ${gpu_num}
../../../funasr/bin/train_ds.py
++model="${model_name_or_model_dir}"
++train_data_set_list="${train_data}"
++valid_data_set_list="${val_data}"
++dataset="AudioDatasetHotword"
++dataset_conf.index_ds="IndexDSJsonl"
++dataset_conf.data_split_num=1
++dataset_conf.batch_sampler="BatchSampler"
++dataset_conf.batch_size=10000
++dataset_conf.sort_size=1024
++dataset_conf.batch_type="token"
++dataset_conf.num_workers=4
++train_conf.max_epoch=10
++train_conf.log_interval=1
++train_conf.resume=true
++train_conf.validate_interval=10000
++train_conf.save_checkpoint_interval=10000
++train_conf.avg_keep_nbest_models_type='loss'
++train_conf.keep_nbest_models=10
++train_conf.avg_nbest_model=5
++train_conf.use_deepspeed=false
++train_conf.deepspeed_config=${deepspeed_config}
++train_conf.find_unused_parameters=true
++optim_conf.lr=0.0002
++output_dir="${output_dir}" &> ${log_file}

下面是我的数据集

Image

下面是我的训练曲线

Image

Metadata

Metadata

Assignees

No one assigned

    Labels

    questionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions