|
| 1 | +import argparse, datetime, os |
| 2 | +import numpy as np |
| 3 | +import torch |
| 4 | +import os.path as osp |
| 5 | + |
| 6 | +import graphlearn_torch as glt |
| 7 | + |
| 8 | +from dataset import float2half |
| 9 | +from download import download_dataset |
| 10 | +from torch_geometric.utils import add_self_loops, remove_self_loops |
| 11 | +from typing import Literal |
| 12 | + |
| 13 | + |
| 14 | +class IGBHeteroDatasetCompress(object): |
| 15 | + def __init__(self, |
| 16 | + path, |
| 17 | + dataset_size, |
| 18 | + layout: Literal['CSC', 'CSR'] = 'CSC',): |
| 19 | + self.dir = path |
| 20 | + self.dataset_size = dataset_size |
| 21 | + self.layout = layout |
| 22 | + |
| 23 | + self.ntypes = ['paper', 'author', 'institute', 'fos'] |
| 24 | + self.etypes = None |
| 25 | + self.edge_dict = {} |
| 26 | + self.paper_nodes_num = {'tiny':100000, 'small':1000000, 'medium':10000000, 'large':100000000, 'full':269346174} |
| 27 | + self.author_nodes_num = {'tiny':357041, 'small':1926066, 'medium':15544654, 'large':116959896, 'full':277220883} |
| 28 | + if not osp.exists(osp.join(path, self.dataset_size, 'processed')): |
| 29 | + download_dataset(path, 'heterogeneous', dataset_size) |
| 30 | + self.process() |
| 31 | + |
| 32 | + def process(self): |
| 33 | + paper_paper_edges = torch.from_numpy(np.load(osp.join(self.dir, self.dataset_size, 'processed', |
| 34 | + 'paper__cites__paper', 'edge_index.npy'))).t() |
| 35 | + author_paper_edges = torch.from_numpy(np.load(osp.join(self.dir, self.dataset_size, 'processed', |
| 36 | + 'paper__written_by__author', 'edge_index.npy'))).t() |
| 37 | + affiliation_author_edges = torch.from_numpy(np.load(osp.join(self.dir, self.dataset_size, 'processed', |
| 38 | + 'author__affiliated_to__institute', 'edge_index.npy'))).t() |
| 39 | + paper_fos_edges = torch.from_numpy(np.load(osp.join(self.dir, self.dataset_size, 'processed', |
| 40 | + 'paper__topic__fos', 'edge_index.npy'))).t() |
| 41 | + if self.dataset_size in ['large', 'full']: |
| 42 | + paper_published_journal = torch.from_numpy(np.load(osp.join(self.dir, self.dataset_size, 'processed', |
| 43 | + 'paper__published__journal', 'edge_index.npy'))).t() |
| 44 | + paper_venue_conference = torch.from_numpy(np.load(osp.join(self.dir, self.dataset_size, 'processed', |
| 45 | + 'paper__venue__conference', 'edge_index.npy'))).t() |
| 46 | + |
| 47 | + cites_edge = add_self_loops(remove_self_loops(paper_paper_edges)[0])[0] |
| 48 | + self.edge_dict = { |
| 49 | + ('paper', 'cites', 'paper'): (torch.cat([cites_edge[1, :], cites_edge[0, :]]), torch.cat([cites_edge[0, :], cites_edge[1, :]])), |
| 50 | + ('paper', 'written_by', 'author'): author_paper_edges, |
| 51 | + ('author', 'affiliated_to', 'institute'): affiliation_author_edges, |
| 52 | + ('paper', 'topic', 'fos'): paper_fos_edges, |
| 53 | + ('author', 'rev_written_by', 'paper'): (author_paper_edges[1, :], author_paper_edges[0, :]), |
| 54 | + ('institute', 'rev_affiliated_to', 'author'): (affiliation_author_edges[1, :], affiliation_author_edges[0, :]), |
| 55 | + ('fos', 'rev_topic', 'paper'): (paper_fos_edges[1, :], paper_fos_edges[0, :]) |
| 56 | + } |
| 57 | + if self.dataset_size in ['large', 'full']: |
| 58 | + self.edge_dict[('paper', 'published', 'journal')] = paper_published_journal |
| 59 | + self.edge_dict[('paper', 'venue', 'conference')] = paper_venue_conference |
| 60 | + self.edge_dict[('journal', 'rev_published', 'paper')] = (paper_published_journal[1, :], paper_published_journal[0, :]) |
| 61 | + self.edge_dict[('conference', 'rev_venue', 'paper')] = (paper_venue_conference[1, :], paper_venue_conference[0, :]) |
| 62 | + self.etypes = list(self.edge_dict.keys()) |
| 63 | + |
| 64 | + # init graphlearn_torch Dataset. |
| 65 | + edge_dir = 'out' if self.layout == 'CSR' else 'in' |
| 66 | + glt_dataset = glt.data.Dataset(edge_dir=edge_dir) |
| 67 | + glt_dataset.init_graph( |
| 68 | + edge_index=self.edge_dict, |
| 69 | + graph_mode='CPU', |
| 70 | + ) |
| 71 | + |
| 72 | + # save the corresponding csr or csc file |
| 73 | + compress_edge_dict = {} |
| 74 | + compress_edge_dict[('paper', 'cites', 'paper')] = 'paper__cites__paper' |
| 75 | + compress_edge_dict[('paper', 'written_by', 'author')] = 'paper__written_by__author' |
| 76 | + compress_edge_dict[('author', 'affiliated_to', 'institute')] = 'author__affiliated_to__institute' |
| 77 | + compress_edge_dict[('paper', 'topic', 'fos')] = 'paper__topic__fos' |
| 78 | + compress_edge_dict[('author', 'rev_written_by', 'paper')] = 'author__rev_written_by__paper' |
| 79 | + compress_edge_dict[('institute', 'rev_affiliated_to', 'author')] = 'institute__rev_affiliated_to__author' |
| 80 | + compress_edge_dict[('fos', 'rev_topic', 'paper')] = 'fos__rev_topic__paper' |
| 81 | + compress_edge_dict[('paper', 'published', 'journal')] = 'paper__published__journal' |
| 82 | + compress_edge_dict[('paper', 'venue', 'conference')] = 'paper__venue__conference' |
| 83 | + compress_edge_dict[('journal', 'rev_published', 'paper')] = 'journal__rev_published__paper' |
| 84 | + compress_edge_dict[('conference', 'rev_venue', 'paper')] = 'conference__rev_venue__paper' |
| 85 | + |
| 86 | + for etype in self.etypes: |
| 87 | + graph = glt_dataset.get_graph(etype) |
| 88 | + indptr, indices, _ = graph.export_topology() |
| 89 | + path = os.path.join(self.dir, self.dataset_size, 'processed', self.layout, compress_edge_dict[etype]) |
| 90 | + if not os.path.exists(path): |
| 91 | + os.makedirs(path) |
| 92 | + torch.save(indptr, os.path.join(path, 'indptr.pt')) |
| 93 | + torch.save(indices, os.path.join(path, 'indices.pt')) |
| 94 | + path = os.path.join(self.dir, self.dataset_size, 'processed', self.layout) |
| 95 | + print(f"The {self.layout} graph has been persisted in path: {path}") |
| 96 | + |
| 97 | + |
| 98 | + |
| 99 | +if __name__ == '__main__': |
| 100 | + parser = argparse.ArgumentParser() |
| 101 | + root = osp.join(osp.dirname(osp.dirname(osp.dirname(osp.realpath(__file__)))), 'data', 'igbh') |
| 102 | + glt.utils.ensure_dir(root) |
| 103 | + parser.add_argument('--path', type=str, default=root, |
| 104 | + help='path containing the datasets') |
| 105 | + parser.add_argument('--dataset_size', type=str, default='full', |
| 106 | + choices=['tiny', 'small', 'medium', 'large', 'full'], |
| 107 | + help='size of the datasets') |
| 108 | + parser.add_argument("--layout", type=str, default='CSC') |
| 109 | + parser.add_argument('--use_fp16', action="store_true", |
| 110 | + help="convert the node/edge feature into fp16 format") |
| 111 | + args = parser.parse_args() |
| 112 | + print(f"Start constructing the {args.layout} graph...") |
| 113 | + igbh_dataset = IGBHeteroDatasetCompress(args.path, args.dataset_size, args.layout) |
| 114 | + if args.use_fp16: |
| 115 | + base_path = osp.join(args.path, args.dataset_size, 'processed') |
| 116 | + float2half(base_path, args.dataset_size) |
| 117 | + |
| 118 | + |
| 119 | + |
| 120 | + |
0 commit comments