-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfirst_order_substitution.pvs
537 lines (409 loc) · 17.8 KB
/
first_order_substitution.pvs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% Properties of Substitutions (Antiunify th) %%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Mariano Miguel Moscato AMA/NASA LaRC Formal Methods
% Maria Julia Dias Lima Universidade de Brasilia
% Mauricio Ayala-Rincon Universidade de Brasilia
% Temur Kutsia RISC/Johannes Kepler Universitaet Linz
% Thaynara Arielly de Lima Universidade Federal de Goias
% Gabriel Ferreira Silva Universidade de Brasilia
%
% Last modified 3rd December, 2024
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
first_order_substitution: THEORY
BEGIN
IMPORTING
first_order_terms_properties
a, i, j, n, k, inc, start: VAR nat
X, Y, Z, Z_: VAR variable
t, t1, t2, s, ti, arg: VAR first_order_term
args, args1, args2: VAR args
lst_args: VAR list[args]
set_vars, set_vars1, V1, V1_: VAR finite_set[variable]
fin_set_t: VAR finite_set[first_order_term]
lst_V, lst_V_: VAR list[variable]
f: VAR f_symbol
coef: VAR list[nat]
% a basic substitution is one of the form {variable->term}, as in X->s
basic_sub: TYPE = [variable, first_order_term]
sigma_basic: VAR basic_sub
% applies the substitution X -> s in the term t
subs(sigma_basic, t): RECURSIVE first_order_term =
LET X = sigma_basic`1,
s = sigma_basic`2
IN CASES t OF
const(a): const(a),
variable(Y): IF X = Y THEN s
ELSE variable(Y)
ENDIF,
unit: unit,
pair(t1, t2): pair(subs(sigma_basic, t1), subs(sigma_basic, t2)),
app(f, arg): app(f, subs(sigma_basic, arg))
ENDCASES
MEASURE t by <<
% A substitution is represented as a list of basic substitutions
% This way the composition of substitutions sigma and delta, represented in math as
% "(sigma o delta)" can be implemented as "append(sigma, delta)".
sub: TYPE = list[basic_sub]
sigma, sigma1, delta, delta1, delta2, lambda1, gamma: VAR sub
% action of a substitution sigma on a term t.
% notice that in "(sigma o delta)(t) = sigma(delta(t))" we apply the substitution delta first,
% and the substitution sigma after. Since "(sigma o delta)(t)" is represented as
% "append(sigma, delta)", we must apply first the basic substitution in the tail of the list
subs(sigma)(t): RECURSIVE first_order_term =
CASES sigma OF
null: t,
cons(head, tail): subs(head, subs(tail)(t))
ENDCASES
MEASURE sigma BY <<
% action of a substitution on a variable
subs(sigma)(X): first_order_term = subs(sigma)(variable(X))
% apply substitution to a list of terms
subs(sigma)(args): RECURSIVE args =
IF null?(args) THEN null
ELSE LET t = car(args) IN cons(subs(sigma)(t), subs(sigma)(cdr(args)))
ENDIF
MEASURE args BY <<
% apply substitution to a list of terms
subs(sigma)(fin_set_t): finite_set[first_order_term] =
{t | EXISTS s: member(s, fin_set_t) AND t = subs(sigma)(s)}
% define when two substitutions are equal
equal?(sigma, delta): bool =
FORALL X: subs(sigma)(X) = subs(delta)(X)
% equality between substitutions restricted to variables in "set_vars"
equal?(sigma, delta, set_vars): bool =
FORALL X:
member(X, set_vars) IMPLIES
subs(sigma)(X) = subs(delta)(X)
equal_syn?(sigma, delta, set_vars): bool =
FORALL X: member(X, set_vars) IMPLIES subs(sigma)(X) = subs(delta)(X)
% define when delta is more general than sigma
more_general?(delta, sigma): bool =
EXISTS delta2: equal?(sigma, append(delta2, delta))
more_general?(delta, sigma, set_vars): bool =
EXISTS delta2: equal?(sigma, append(delta2, delta), set_vars)
% a superset of the domain of a substitution sigma
supset_dom(sigma): RECURSIVE finite_set[variable] =
IF null?(sigma) THEN emptyset
ELSE LET X = car(sigma)`1 IN add(X, supset_dom(cdr(sigma)))
ENDIF
MEASURE sigma BY <<
% if subs(sigma)(X) /= variable(X) then member(X, supset_dom(sigma))
% needed for the TCC of dom
supset_dom_correct: LEMMA
subs(sigma)(X) /= variable(X) IMPLIES member(X, supset_dom(sigma))
% domain of a substitution
dom(sigma): finite_set[variable] = {X | subs(sigma)(X) /= variable(X)}
supset_dom_correct2: LEMMA
subset?(dom(sigma), supset_dom(sigma))
% image of a substitution
img(sigma): finite_set[first_order_term] = {t | EXISTS X: member(X, dom(sigma)) AND subs(sigma)(X) = t}
idempotent?(sigma): bool =
FORALL X: subs(sigma)(subs(sigma)(X)) = subs(sigma)(X)
nice?(sigma): RECURSIVE bool =
IF null?(sigma) THEN TRUE
ELSE LET (X, t) = car(sigma) IN
(NOT member(X, vars(t)) AND NOT member(X, supset_dom(cdr(sigma))) AND
disjoint?(vars(t), supset_dom(cdr(sigma))) AND nice?(cdr(sigma)))
ENDIF
MEASURE sigma BY <<
contained?(delta, set_vars): bool =
subset?(dom(delta), set_vars) AND subset?(vars(img(delta)), set_vars)
% creates a substitution {X_start -> X_start + inc, ..., X_{start + n} -> X_{start + n} + inc}
shift(start, n, inc): RECURSIVE sub =
IF n = 0 THEN cons((start, variable(start + inc)), null)
ELSE cons((start, variable(start + inc)), shift(start+1, n-1, inc))
ENDIF
MEASURE n
% wrapper for the function below
% should be called with select_greater(lst_V_) >= select_greater(lst_V)
shift(lst_V, lst_V_, n): sub =
LET Z = select_greater[nat](lst_V), Z_ = select_greater[nat](lst_V_) IN
IF Z > Z_ THEN null
ELSE LET inc = Z_ - Z IN shift(Z+1, n, inc)
ENDIF
shift(V1, V1_, n): sub = shift(finset2list(V1), finset2list(V1_), n)
% a renaming sigma always instantiates a variable to a variable and
% is injective for the variables in the domain.
renaming?(sigma): bool =
(FORALL t: member(t, img(sigma)) IMPLIES var?(t)) AND
(FORALL X, Y:
member(X, dom(sigma)) AND member(Y, dom(sigma)) AND
subs(sigma)(X) = subs(sigma)(Y) IMPLIES X = Y)
% definition of a renaming
renaming: TYPE = {sigma: sub | renaming?(sigma)}
rho: VAR renaming
%%%%%%%%%%%%%%%%%%% Theorems
% substitution and their effects on the terms
subs_const: LEMMA
subs(sigma)(const(a)) = const(a)
subs_unit: LEMMA
subs(sigma)(unit) = unit
subs_pair: LEMMA
subs(sigma)(pair(t, s)) = pair(subs(sigma)(t), subs(sigma)(s))
subs_app: LEMMA
subs(sigma)(app(f, arg)) = app(f, subs(sigma)(arg))
subs_var: LEMMA
var?(subs(sigma)(t)) IMPLIES var?(t)
subs_const2: LEMMA
const?(subs(sigma)(t)) IMPLIES (const?(t) OR var?(t))
subs_pair2: LEMMA
pair?(subs(sigma)(t)) IMPLIES (pair?(t) OR var?(t))
subs_func: LEMMA
app?(subs(sigma)(t)) IMPLIES (same_func?(subs(sigma)(t), t) OR var?(t))
subs_ord: LEMMA
t = subs(sigma)(s) IMPLIES (ord(t) = ord(s) OR (var?(s) AND member(V(s), dom(sigma))))
subs_mem: LEMMA
member(t, subs(sigma)(args)) IFF
EXISTS s:
member(s, args) AND t = subs(sigma)(s)
subs_len: LEMMA
length(subs(sigma)(args)) = length(args)
subs_append: LEMMA
subs(sigma)(append(args1, args2)) = append(subs(sigma)(args1), subs(sigma)(args2))
subs_append2: LEMMA
subs(append(sigma, delta))(t) = subs(sigma)(subs(delta)(t))
subs_map: LEMMA
map(subs(sigma))(args) = subs(sigma)(args)
subs_append_args: LEMMA
subs(append(sigma, delta))(args) = subs(sigma)((subs(delta))(args))
subs_map_append_lst_args: LEMMA
map(subs(append(sigma, delta)))(lst_args) = map(subs(sigma))(map(subs(delta))(lst_args))
subs_cons: LEMMA
subs(cons((X, t), delta))(args1) = subs(cons((X, t), null))(subs(delta)(args1))
subs_equal?: LEMMA
t = s IMPLIES
subs(sigma)(t) = subs(sigma)(s)
% domain and img of a substitution lemma
vars_subs_t: LEMMA
subset?(vars(subs(sigma)(t)), union(vars(img(sigma)), vars(t)))
basic_sub_no_effect: LEMMA
NOT member(X, vars(t)) IMPLIES subs((X, s), t) = t
basic_sub_elim_var: LEMMA
NOT member(X, vars(s)) IMPLIES NOT member(X, vars(subs((X, s), t)))
basic_sub_not_elim_var: LEMMA
X /= Y AND NOT member(Y, vars(s)) AND member(Y, vars(subs((X, s), t))) IMPLIES member(Y, vars(t))
dom_basic_sub: LEMMA
dom(cons((X, t), null)) = singleton(X) OR member(X, vars(t))
dom_basic_sub2: LEMMA
dom(cons((X, t), null)) = singleton(X) OR dom(cons((X, t), null)) = emptyset
dom_null: LEMMA
dom(null) = emptyset
dom_append: LEMMA
subset?(dom(append(delta, sigma)), union(dom(delta), dom(sigma)))
img_basic_sub: LEMMA
img(cons((X, t), null)) = singleton(t) OR member(X, vars(t))
img_null: LEMMA
img(null) = emptyset
subs_no_effect_t: LEMMA
disjoint?(dom(sigma), vars(t)) IMPLIES subs(sigma)(t) = t
subs_no_effect_t_var: LEMMA
NOT member(X, dom(sigma)) IMPLIES subs(cons((X,t),sigma))(X) = t
dom_append2: LEMMA
disjoint?(vars(img(sigma)), dom(delta)) AND disjoint?(dom(delta), dom(sigma)) IMPLIES
dom(append(delta, sigma)) = union(dom(delta), dom(sigma))
dom_append3 : LEMMA
NOT member(X, union(vars(t),supset_dom(sigma))) AND
empty?(intersection(vars(t),union(supset_dom(sigma),vars(img(sigma))))) IMPLIES
LET sigma_p = cons((X,t),sigma) in
dom(sigma_p) = union(singleton(X), dom(sigma))
subs_no_effect_args: LEMMA
disjoint?(dom(sigma), vars(args)) IMPLIES subs(sigma)(args) = args
apply_sub_elim_var_t: LEMMA
member(X, dom(sigma)) AND NOT member(X, vars(img(sigma)))
IMPLIES NOT member(X, vars(subs(sigma)(t)))
vars_img_append: LEMMA
subset?(vars(img(append(delta, sigma))), union(vars(img(delta)), vars(img(sigma))))
% idempotent and properties of substitutios
idempotent_null: LEMMA
idempotent?(null[basic_sub])
var_dom_sub_dif_term: LEMMA
member(X, vars(t)) AND member(X, dom(sigma)) IMPLIES
subs(sigma)(t) /= t
idempotent_disjoint_dom_img: LEMMA
idempotent?(sigma) IMPLIES disjoint?(dom(sigma), vars(img(sigma)))
idempotent_disjoint_dom_img2: LEMMA
disjoint?(dom(sigma), vars(img(sigma))) IMPLIES idempotent?(sigma)
apply_sub_elim_var_t2: LEMMA
member(X, dom(sigma)) AND idempotent?(sigma) IMPLIES NOT member(X, vars(subs(sigma)(t)))
subs_singleton: LEMMA
subs(sigma)(singleton(t)) = singleton(subs(sigma)(t))
img_append_subset: LEMMA
subset?(img(append(sigma, delta)), union(image(subs(sigma))(img(delta)), img(sigma)))
img_preservation: LEMMA
member(t, img(sigma)) AND disjoint?(dom(delta),vars(t)) IMPLIES
member (t, img(append(delta, sigma)))
img_preservation_basic_subs: COROLLARY
member(t, img(sigma)) AND NOT member(X,vars(t)) IMPLIES
member (t, img(cons((X,s), sigma)))
idempotent_append: LEMMA
idempotent?(sigma) AND idempotent?(delta) AND
disjoint?(dom(delta), vars(img(sigma))) IMPLIES
idempotent?(append(sigma, delta))
idempotent_subs_subs_t: LEMMA
idempotent?(sigma) IMPLIES subs(sigma)(subs(sigma)(t)) = subs(sigma)(t)
subs_divide_not_var: LEMMA
NOT var?(subs(sigma)(X)) IMPLIES
EXISTS delta, delta2, sigma_basic, Y:
sigma = append(delta, cons(sigma_basic, delta2)) AND
subs(delta2)(X) = variable(Y) AND sigma_basic`1 = Y AND NOT var?(sigma_basic`2)
basic_sub_info: LEMMA
LET sigma = cons((X, t), null) IN
NOT member(X, vars(t)) IMPLIES dom(sigma) = singleton(X) AND img(sigma) = singleton(t)
AND idempotent?(sigma)
% subterms, same_func, im_under
subterms_subs: LEMMA
subset?(subterms(subs(sigma)(t)),
union(image(subs(sigma))(subterms(t)), subterms(img(sigma))))
subs_no_effect_subterm: LEMMA
subs(sigma)(t) = t AND member(s, subterms(t)) IMPLIES subs(sigma)(s) = s
subterms_img_append: LEMMA
subset?(subterms(img(append(sigma, delta))),
union(image(subs(sigma))(subterms(img(delta))), subterms(img(sigma))))
same_func_subs: LEMMA
app?(t) IMPLIES same_func?(t, subs(sigma)(t))
func_subterms_subs: LEMMA
func?(s) AND member(s, subterms(subs(sigma)(t))) IMPLIES
((EXISTS ti:
same_func?(ti, s) AND subs(sigma)(ti) = s AND member(ti, subterms(t)))
OR
member(s, subterms(img(sigma))))
% nice, supset_dom, well_formed
supset_dom_equiv: LEMMA
member(X, supset_dom(delta)) IFF EXISTS t: member((X, t), delta)
supset_dom_append: LEMMA
supset_dom(append(sigma, delta)) = union(supset_dom(sigma), supset_dom(delta))
nice_disjoint_dom_img: LEMMA
nice?(sigma) IMPLIES disjoint?(dom(sigma), vars(img(sigma)))
nice_idempotent: LEMMA
nice?(sigma) IMPLIES idempotent?(sigma)
nice_append: LEMMA
nice?(append(sigma, delta)) IMPLIES nice?(sigma) AND nice?(delta)
nice_append2: LEMMA
nice?(delta) AND nice?(sigma) AND
(FORALL X, t: member((X, t), sigma) IMPLIES
NOT member(X, supset_dom(delta)) AND
disjoint?(vars(t), supset_dom(delta)))
IMPLIES nice?(append(sigma, delta))
nice_append_supset_dom: LEMMA
nice?(append(sigma, delta)) AND member(X, supset_dom(sigma)) IMPLIES
NOT member(X, supset_dom(delta))
niceness_preservation : LEMMA
FORALL (sigma : (nice?)) :
NOT member(X, union(vars(t),supset_dom(sigma))) AND
empty?(intersection(vars(t),union(supset_dom(sigma),vars(img(sigma))))) IMPLIES
LET sigma_p = cons((X,t),sigma) in
nice?(sigma_p)
nice_basic_sub_append: LEMMA
LET sigma_p = cons((X,t),sigma) in
nice?(sigma_p) IMPLIES
dom(sigma_p) = union(singleton(X), dom(sigma))
IMPORTING list_aux_equational_reasoning2parameters[variable, first_order_term]
vars_img_sec_proj: LEMMA
subset?(vars(img(sigma)), vars(sec_proj(sigma)))
% equality between substitutions
equal_sub_equiv: LEMMA
equal?(delta, sigma) IMPLIES (subs(delta)(t) = subs(sigma)(t))
equal_sub_equiv_alt: LEMMA
equal?(delta, sigma, set_vars) AND subset?(vars(t), set_vars) IMPLIES
subs(delta)(t) = subs(sigma)(t)
equal_sub_change_eq_terms: LEMMA
equal?(delta, sigma) IMPLIES
((subs(delta)(t) = subs(delta)(s)) IFF (subs(sigma)(t) = subs(sigma)(s)))
equal_sub_ref: LEMMA equal?(sigma, sigma)
equal_sub_sym: LEMMA
equal?(delta, gamma) = equal?(gamma, delta)
equal_sub_trans: LEMMA
equal?(delta, gamma) AND equal?(gamma, sigma) IMPLIES equal?(delta, sigma)
equal_sub_append: LEMMA
equal?(sigma, sigma1) IMPLIES equal?(append(sigma, delta), append(sigma1, delta))
% equality between substitutions restricted to a set:
equal_sub_subset: LEMMA
equal?(sigma, sigma1, set_vars) AND subset?(set_vars1, set_vars) IMPLIES
equal?(sigma, sigma1, set_vars1)
equal_sub_res_trans: LEMMA
equal?(delta, gamma, set_vars) AND equal?(gamma, sigma, set_vars) IMPLIES
equal?(delta, sigma, set_vars)
equal_sub_res_append: LEMMA
equal?(sigma, sigma1, set_vars) IMPLIES
equal?(append(delta, sigma), append(delta, sigma1), set_vars)
% syntactic equality between substitutions
equal_syn_t: LEMMA
equal_syn?(sigma, sigma1, vars(t)) IMPLIES subs(sigma)(t) = subs(sigma1)(t)
% this lemmas appeared when proving correctness and completeness
idempotent_append_cond: LEMMA
idempotent?(sigma) AND NOT member(X, vars(t)) AND NOT member(X, dom(sigma))
AND disjoint?(vars(t), dom(sigma))
IMPLIES idempotent?(append(cons((X, t), null), sigma))
%% contained, more_general
subs_inst: LEMMA
LET delta = cons((X, t), null) IN
(subs(sigma)(variable(X)) = subs(sigma)(t)) IMPLIES
equal?(sigma, append(sigma, delta))
contained_append: LEMMA
contained?(delta, set_vars) AND contained?(sigma, set_vars)
IMPLIES contained?(append(delta, sigma), set_vars)
contained_supset: LEMMA
contained?(delta, set_vars) AND subset?(set_vars, set_vars1)
IMPLIES contained?(delta, set_vars1)
more_general_equal: LEMMA
equal?(sigma, sigma1) IMPLIES
more_general?(delta, sigma) = more_general?(delta, sigma1)
more_general_append: LEMMA
more_general?(sigma, sigma1) IMPLIES more_general?(append(sigma, delta), append(sigma1, delta))
more_general_supset: LEMMA
more_general?(sigma, append(delta1, delta), set_vars1) AND subset?(set_vars, set_vars1)
AND disjoint?(dom(delta1), set_vars) AND contained?(delta, set_vars)
IMPLIES more_general?(sigma, delta, set_vars)
% renamings
renaming_ord: LEMMA
ord(subs(rho)(t)) = ord(t)
renaming_ord2: LEMMA
(const?(t) IFF const?(subs(rho)(t))) AND (var?(t) IFF var?(subs(rho)(t))) AND
(t = unit IFF subs(rho)(t) = unit) AND (pair?(t) IFF pair?(subs(rho)(t))) AND
(app?(t) IFF app?(subs(rho)(t)))
renaming_var: LEMMA
var?(subs(rho)(X))
renaming_equal: LEMMA
(FORALL X:
member(X, vars(img(rho))) AND NOT member(X, dom(rho)) IMPLIES NOT member(X, V1)) AND
subset?(vars(t), V1) AND subset?(vars(s), V1) AND subs(rho)(t) = subs(rho)(s)
IMPLIES t = s
renaming_var2: LEMMA
(FORALL X:
member(X, vars(img(rho))) AND NOT member(X, dom(rho)) IMPLIES NOT member(X, V1)) AND
var?(s) AND member(V(s), V1) AND subset?(vars(t), V1) IMPLIES
(member(V(subs(rho)(s)), vars(subs(rho)(t))) IFF member(V(s), vars(t)))
renaming_equal_syn: LEMMA
LET sig1 = cons((Y, t), null), sig1_ = cons((V(subs(rho)(Y)), subs(rho)(t)), null) IN
(FORALL X:
member(X, vars(img(rho))) AND NOT member(X, dom(rho)) IMPLIES NOT member(X, V1))
AND member(Y, V1) IMPLIES equal_syn?(append(sig1_, rho), append(rho, sig1), V1)
% shifts lemma
shift_cor: LEMMA
IF start <= k AND k <= start + n THEN
subs(shift(start, n, inc))(variable(k)) = variable(k + inc)
ELSE subs(shift(start, n, inc))(variable(k)) = variable(k)
ENDIF
shift_append_equal_syn: LEMMA
LET rho1 = shift(V1, V1_, n) IN
(subset?(dom(rho), V1) AND subset?(vars(img(rho)), V1_)) IMPLIES
equal_syn?(rho, append(rho, rho1), V1)
shift_dom: LEMMA
subset?(dom(shift(start, n, inc)), from_min2max[nat](start, start + n))
shift_dom2: LEMMA
(inc > 0 IMPLIES dom(shift(start, n, inc)) = from_min2max[nat](start, start + n)) AND
(inc = 0 IMPLIES dom(shift(start, n, inc)) = emptyset)
shift_img: LEMMA
subset?(vars(img(shift(start, n, inc))), from_min2max[nat](start + inc, start + inc + n))
shift_img2: LEMMA
(inc > 0 IMPLIES vars(img(shift(start, n, inc))) = from_min2max[nat](start+inc, start + n + inc)) AND
(inc = 0 IMPLIES img(shift(start, n, inc)) = emptyset)
shift_renaming: LEMMA
renaming?(shift(start, n, inc))
shift_append_renaming: LEMMA
LET rho1 = shift(V1, V1_, n) IN
(subset?(dom(rho), V1) AND subset?(vars(img(rho)), V1_)) IMPLIES
renaming?(append(rho, rho1))
END first_order_substitution