diff --git a/langchain_postgres/vectorstores.py b/langchain_postgres/vectorstores.py index 047c6f5a..e1630a18 100644 --- a/langchain_postgres/vectorstores.py +++ b/langchain_postgres/vectorstores.py @@ -939,7 +939,7 @@ def similarity_search( List of Documents most similar to the query. """ assert not self._async_engine, "This method must be called without async_mode" - embedding = self.embedding_function.embed_query(text=query) + embedding = self.embeddings.embed_query(query) return self.similarity_search_by_vector( embedding=embedding, k=k, @@ -964,7 +964,7 @@ async def asimilarity_search( List of Documents most similar to the query. """ await self.__apost_init__() # Lazy async init - embedding = self.embedding_function.embed_query(text=query) + embedding = await self.embeddings.aembed_query(query) return await self.asimilarity_search_by_vector( embedding=embedding, k=k, @@ -988,7 +988,7 @@ def similarity_search_with_score( List of Documents most similar to the query and score for each. """ assert not self._async_engine, "This method must be called without async_mode" - embedding = self.embedding_function.embed_query(query) + embedding = self.embeddings.embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter ) @@ -1011,7 +1011,7 @@ async def asimilarity_search_with_score( List of Documents most similar to the query and score for each. """ await self.__apost_init__() # Lazy async init - embedding = self.embedding_function.embed_query(query) + embedding = await self.embeddings.aembed_query(query) docs = await self.asimilarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter ) @@ -1065,7 +1065,7 @@ def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, floa page_content=result.EmbeddingStore.document, metadata=result.EmbeddingStore.cmetadata, ), - result.distance if self.embedding_function is not None else None, + result.distance if self.embeddings is not None else None, ) for result in results ] @@ -1569,7 +1569,7 @@ async def afrom_texts( **kwargs: Any, ) -> PGVector: """Return VectorStore initialized from documents and embeddings.""" - embeddings = embedding.embed_documents(list(texts)) + embeddings = await embedding.aembed_documents(list(texts)) return await cls.__afrom( texts, embeddings, @@ -1992,7 +1992,7 @@ def max_marginal_relevance_search( Returns: List[Document]: List of Documents selected by maximal marginal relevance. """ - embedding = self.embedding_function.embed_query(query) + embedding = self.embeddings.embed_query(query) return self.max_marginal_relevance_search_by_vector( embedding, k=k, @@ -2031,7 +2031,7 @@ async def amax_marginal_relevance_search( List[Document]: List of Documents selected by maximal marginal relevance. """ await self.__apost_init__() # Lazy async init - embedding = self.embedding_function.embed_query(query) + embedding = await self.embeddings.aembed_query(query) return await self.amax_marginal_relevance_search_by_vector( embedding, k=k, @@ -2070,7 +2070,7 @@ def max_marginal_relevance_search_with_score( List[Tuple[Document, float]]: List of Documents selected by maximal marginal relevance to the query and score for each. """ - embedding = self.embedding_function.embed_query(query) + embedding = self.embeddings.embed_query(query) docs = self.max_marginal_relevance_search_with_score_by_vector( embedding=embedding, k=k, @@ -2111,7 +2111,7 @@ async def amax_marginal_relevance_search_with_score( relevance to the query and score for each. """ await self.__apost_init__() # Lazy async init - embedding = self.embedding_function.embed_query(query) + embedding = await self.embeddings.aembed_query(query) docs = await self.amax_marginal_relevance_search_with_score_by_vector( embedding=embedding, k=k,