|
76 | 76 | },
|
77 | 77 | {
|
78 | 78 | "cell_type": "code",
|
79 |
| - "execution_count": null, |
| 79 | + "execution_count": 2, |
80 | 80 | "id": "irl7eMFnSPZr",
|
81 | 81 | "metadata": {
|
82 | 82 | "id": "irl7eMFnSPZr"
|
|
90 | 90 | "POSTGRES_PORT = \"6024\" # @param {type: \"string\"}\n",
|
91 | 91 | "POSTGRES_DB = \"langchain\" # @param {type: \"string\"}\n",
|
92 | 92 | "TABLE_NAME = \"vectorstore\" # @param {type: \"string\"}\n",
|
93 |
| - "VECTOR_SIZE = 768 # @param {type: \"int\"}" |
| 93 | + "VECTOR_SIZE = 1024 # @param {type: \"int\"}" |
94 | 94 | ]
|
95 | 95 | },
|
96 | 96 | {
|
|
118 | 118 | },
|
119 | 119 | {
|
120 | 120 | "cell_type": "code",
|
121 |
| - "execution_count": null, |
| 121 | + "execution_count": 3, |
122 | 122 | "metadata": {},
|
123 | 123 | "outputs": [],
|
124 | 124 | "source": [
|
|
132 | 132 | },
|
133 | 133 | {
|
134 | 134 | "cell_type": "code",
|
135 |
| - "execution_count": null, |
| 135 | + "execution_count": 4, |
136 | 136 | "metadata": {},
|
137 | 137 | "outputs": [],
|
138 | 138 | "source": [
|
139 | 139 | "from langchain_postgres import PGEngine\n",
|
140 | 140 | "\n",
|
141 |
| - "engine = PGEngine.from_connection_string(url=CONNECTION_STRING)" |
| 141 | + "pg_engine = PGEngine.from_connection_string(url=CONNECTION_STRING)" |
142 | 142 | ]
|
143 | 143 | },
|
144 | 144 | {
|
|
152 | 152 | },
|
153 | 153 | {
|
154 | 154 | "cell_type": "code",
|
155 |
| - "execution_count": null, |
| 155 | + "execution_count": 5, |
156 | 156 | "metadata": {},
|
157 | 157 | "outputs": [],
|
158 | 158 | "source": [
|
|
178 | 178 | },
|
179 | 179 | {
|
180 | 180 | "cell_type": "code",
|
181 |
| - "execution_count": null, |
| 181 | + "execution_count": 7, |
182 | 182 | "metadata": {
|
183 | 183 | "id": "avlyHEMn6gzU"
|
184 | 184 | },
|
185 | 185 | "outputs": [],
|
186 | 186 | "source": [
|
187 |
| - "await engine.ainit_vectorstore_table(\n", |
| 187 | + "await pg_engine.ainit_vectorstore_table(\n", |
188 | 188 | " table_name=TABLE_NAME,\n",
|
189 | 189 | " vector_size=VECTOR_SIZE,\n",
|
190 | 190 | ")"
|
|
200 | 200 | "```python\n",
|
201 | 201 | "SCHEMA_NAME=\"my_schema\"\n",
|
202 | 202 | "\n",
|
203 |
| - "await engine.ainit_vectorstore_table(\n", |
| 203 | + "await pg_engine.ainit_vectorstore_table(\n", |
204 | 204 | " table_name=TABLE_NAME,\n",
|
205 | 205 | " vector_size=768,\n",
|
206 | 206 | " schema_name=SCHEMA_NAME, # Default: \"public\"\n",
|
|
219 | 219 | },
|
220 | 220 | {
|
221 | 221 | "cell_type": "code",
|
222 |
| - "execution_count": null, |
| 222 | + "execution_count": 8, |
223 | 223 | "metadata": {
|
224 | 224 | "colab": {
|
225 | 225 | "base_uri": "https://localhost:8080/"
|
|
231 | 231 | "source": [
|
232 | 232 | "from langchain_cohere import CohereEmbeddings\n",
|
233 | 233 | "\n",
|
234 |
| - "embedding = CohereEmbeddings()" |
| 234 | + "embedding = CohereEmbeddings(model=\"embed-english-v3.0\")" |
235 | 235 | ]
|
236 | 236 | },
|
237 | 237 | {
|
|
245 | 245 | },
|
246 | 246 | {
|
247 | 247 | "cell_type": "code",
|
248 |
| - "execution_count": null, |
| 248 | + "execution_count": 9, |
249 | 249 | "metadata": {
|
250 | 250 | "id": "z-AZyzAQ7bsf"
|
251 | 251 | },
|
|
254 | 254 | "from langchain_postgres import PGVectorStore\n",
|
255 | 255 | "\n",
|
256 | 256 | "store = await PGVectorStore.create(\n",
|
257 |
| - " engine=engine,\n", |
| 257 | + " engine=pg_engine,\n", |
258 | 258 | " table_name=TABLE_NAME,\n",
|
259 | 259 | " # schema_name=SCHEMA_NAME,\n",
|
260 | 260 | " embedding_service=embedding,\n",
|
|
272 | 272 | },
|
273 | 273 | {
|
274 | 274 | "cell_type": "code",
|
275 |
| - "execution_count": null, |
| 275 | + "execution_count": 11, |
276 | 276 | "metadata": {},
|
277 | 277 | "outputs": [],
|
278 | 278 | "source": [
|
|
298 | 298 | "store_with_documents = await PGVectorStore.afrom_documents(\n",
|
299 | 299 | " documents=docs,\n",
|
300 | 300 | " ids=ids,\n",
|
301 |
| - " engine=engine,\n", |
| 301 | + " engine=pg_engine,\n", |
302 | 302 | " table_name=TABLE_NAME,\n",
|
303 |
| - " # schema_name=SCHEMA_NAME,\n", |
304 |
| - " embedding_service=embedding,\n", |
| 303 | + " embedding=embedding,\n", |
305 | 304 | ")"
|
306 | 305 | ]
|
307 | 306 | },
|
|
389 | 388 | },
|
390 | 389 | {
|
391 | 390 | "cell_type": "code",
|
392 |
| - "execution_count": null, |
| 391 | + "execution_count": 16, |
393 | 392 | "metadata": {},
|
394 | 393 | "outputs": [],
|
395 | 394 | "source": [
|
|
408 | 407 | },
|
409 | 408 | {
|
410 | 409 | "cell_type": "code",
|
411 |
| - "execution_count": null, |
| 410 | + "execution_count": 17, |
412 | 411 | "metadata": {},
|
413 | 412 | "outputs": [],
|
414 | 413 | "source": [
|
|
424 | 423 | },
|
425 | 424 | {
|
426 | 425 | "cell_type": "code",
|
427 |
| - "execution_count": null, |
| 426 | + "execution_count": 18, |
428 | 427 | "metadata": {},
|
429 | 428 | "outputs": [],
|
430 | 429 | "source": [
|
|
444 | 443 | },
|
445 | 444 | {
|
446 | 445 | "cell_type": "code",
|
447 |
| - "execution_count": null, |
| 446 | + "execution_count": 19, |
448 | 447 | "metadata": {},
|
449 | 448 | "outputs": [],
|
450 | 449 | "source": [
|
|
454 | 453 | "TABLE_NAME = \"vectorstore_custom\"\n",
|
455 | 454 | "# SCHEMA_NAME = \"my_schema\"\n",
|
456 | 455 | "\n",
|
457 |
| - "await engine.ainit_vectorstore_table(\n", |
| 456 | + "await pg_engine.ainit_vectorstore_table(\n", |
458 | 457 | " table_name=TABLE_NAME,\n",
|
459 | 458 | " # schema_name=SCHEMA_NAME,\n",
|
460 | 459 | " vector_size=VECTOR_SIZE,\n",
|
|
464 | 463 | "\n",
|
465 | 464 | "# Initialize PGVectorStore\n",
|
466 | 465 | "custom_store = await PGVectorStore.create(\n",
|
467 |
| - " engine=engine,\n", |
| 466 | + " engine=pg_engine,\n", |
468 | 467 | " table_name=TABLE_NAME,\n",
|
469 | 468 | " # schema_name=SCHEMA_NAME,\n",
|
470 | 469 | " embedding_service=embedding,\n",
|
|
578 | 577 | "\n",
|
579 | 578 | "# Initialize PGVectorStore\n",
|
580 | 579 | "custom_store = await PGVectorStore.create(\n",
|
581 |
| - " engine=engine,\n", |
| 580 | + " engine=pg_engine,\n", |
582 | 581 | " table_name=TABLE_NAME,\n",
|
583 | 582 | " # schema_name=SCHEMA_NAME,\n",
|
584 | 583 | " embedding_service=embedding,\n",
|
|
685 | 684 | "name": "python",
|
686 | 685 | "nbconvert_exporter": "python",
|
687 | 686 | "pygments_lexer": "ipython3",
|
688 |
| - "version": "3.12.3" |
| 687 | + "version": "3.12.8" |
689 | 688 | }
|
690 | 689 | },
|
691 | 690 | "nbformat": 4,
|
|
0 commit comments