|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# PGChatMessageHistory\n", |
| 8 | + "\n", |
| 9 | + "`PGChatMessageHistory` is a an implementation of the the LangChain ChatMessageHistory abstraction using `postgres` as the backend.\n" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": { |
| 15 | + "id": "IR54BmgvdHT_" |
| 16 | + }, |
| 17 | + "source": [ |
| 18 | + "## Install\n", |
| 19 | + "\n", |
| 20 | + "Install the `langchain-postgres` package." |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "code", |
| 25 | + "execution_count": null, |
| 26 | + "metadata": { |
| 27 | + "colab": { |
| 28 | + "base_uri": "https://localhost:8080/", |
| 29 | + "height": 1000 |
| 30 | + }, |
| 31 | + "id": "0ZITIDE160OD", |
| 32 | + "outputId": "e184bc0d-6541-4e0a-82d2-1e216db00a2d", |
| 33 | + "tags": [] |
| 34 | + }, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "%pip install --upgrade --quiet langchain-postgres" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "markdown", |
| 42 | + "metadata": { |
| 43 | + "id": "QuQigs4UoFQ2" |
| 44 | + }, |
| 45 | + "source": [ |
| 46 | + "## Create an engine\n", |
| 47 | + "\n", |
| 48 | + "The first step is to create a `PGEngine` instance, which does the following:\n", |
| 49 | + "\n", |
| 50 | + "1. Allows you to create tables for storing documents and embeddings.\n", |
| 51 | + "2. Maintains a connection pool that manages connections to the database. This allows sharing of the connection pool and helps to reduce latency for database calls." |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": null, |
| 57 | + "metadata": { |
| 58 | + "tags": [] |
| 59 | + }, |
| 60 | + "outputs": [], |
| 61 | + "source": [ |
| 62 | + "from langchain_postgres import PGEngine\n", |
| 63 | + "\n", |
| 64 | + "# See docker command above to launch a Postgres instance with pgvector enabled.\n", |
| 65 | + "# Replace these values with your own configuration.\n", |
| 66 | + "POSTGRES_USER = \"langchain\"\n", |
| 67 | + "POSTGRES_PASSWORD = \"langchain\"\n", |
| 68 | + "POSTGRES_HOST = \"localhost\"\n", |
| 69 | + "POSTGRES_PORT = \"6024\"\n", |
| 70 | + "POSTGRES_DB = \"langchain\"\n", |
| 71 | + "\n", |
| 72 | + "CONNECTION_STRING = (\n", |
| 73 | + " f\"postgresql+asyncpg://{POSTGRES_USER}:{POSTGRES_PASSWORD}@{POSTGRES_HOST}\"\n", |
| 74 | + " f\":{POSTGRES_PORT}/{POSTGRES_DB}\"\n", |
| 75 | + ")\n", |
| 76 | + "\n", |
| 77 | + "pg_engine = PGEngine.from_connection_string(url=CONNECTION_STRING)" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "markdown", |
| 82 | + "metadata": {}, |
| 83 | + "source": [ |
| 84 | + "To use psycopg3 driver, set your connection string to `postgresql+psycopg://`" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "markdown", |
| 89 | + "metadata": { |
| 90 | + "id": "D9Xs2qhm6X56" |
| 91 | + }, |
| 92 | + "source": [ |
| 93 | + "### Initialize a table\n", |
| 94 | + "The `PGChatMessageHistory` class requires a database table with a specific schema in order to store the chat message history.\n", |
| 95 | + "\n", |
| 96 | + "The `PGEngine` engine has a helper method `init_chat_history_table()` that can be used to create a table with the proper schema for you." |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": null, |
| 102 | + "metadata": { |
| 103 | + "tags": [] |
| 104 | + }, |
| 105 | + "outputs": [], |
| 106 | + "source": [ |
| 107 | + "TABLE_NAME = \"chat history\"\n", |
| 108 | + "\n", |
| 109 | + "pg_engine.init_chat_history_table(table_name=TABLE_NAME)" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "markdown", |
| 114 | + "metadata": {}, |
| 115 | + "source": [ |
| 116 | + "#### Optional Tip: 💡\n", |
| 117 | + "You can also specify a schema name by passing `schema_name` wherever you pass `table_name`. Eg:\n", |
| 118 | + "\n", |
| 119 | + "```python\n", |
| 120 | + "SCHEMA_NAME=\"my_schema\"\n", |
| 121 | + "\n", |
| 122 | + "engine.init_chat_history_table(\n", |
| 123 | + " table_name=TABLE_NAME,\n", |
| 124 | + " schema_name=SCHEMA_NAME # Default: \"public\"\n", |
| 125 | + ")\n", |
| 126 | + "```" |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "markdown", |
| 131 | + "metadata": {}, |
| 132 | + "source": [ |
| 133 | + "### PGChatMessageHistory\n", |
| 134 | + "\n", |
| 135 | + "To initialize the `PGChatMessageHistory` class you need to provide only 3 things:\n", |
| 136 | + "\n", |
| 137 | + "1. `engine` - An instance of a `PGEngine` engine.\n", |
| 138 | + "1. `session_id` - A unique identifier string that specifies an id for the session.\n", |
| 139 | + "1. `table_name` : The name of the table within the PG database to store the chat message history.\n", |
| 140 | + "1. `schema_name` : The name of the database schema containing the chat message history table." |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "code", |
| 145 | + "execution_count": null, |
| 146 | + "metadata": { |
| 147 | + "id": "z-AZyzAQ7bsf", |
| 148 | + "tags": [] |
| 149 | + }, |
| 150 | + "outputs": [], |
| 151 | + "source": [ |
| 152 | + "from langchain_postgres import PGChatMessageHistory\n", |
| 153 | + "\n", |
| 154 | + "history = PGChatMessageHistory.create_sync(\n", |
| 155 | + " pg_engine,\n", |
| 156 | + " session_id=\"test_session\",\n", |
| 157 | + " table_name=TABLE_NAME,\n", |
| 158 | + " # schema_name=SCHEMA_NAME,\n", |
| 159 | + ")\n", |
| 160 | + "history.add_user_message(\"hi!\")\n", |
| 161 | + "history.add_ai_message(\"whats up?\")" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "history.messages" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "markdown", |
| 175 | + "metadata": {}, |
| 176 | + "source": [ |
| 177 | + "#### Cleaning up\n", |
| 178 | + "When the history of a specific session is obsolete and can be deleted, it can be done the following way.\n", |
| 179 | + "\n", |
| 180 | + "**Note:** Once deleted, the data is no longer stored in Postgres and is gone forever." |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "execution_count": null, |
| 186 | + "metadata": { |
| 187 | + "tags": [] |
| 188 | + }, |
| 189 | + "outputs": [], |
| 190 | + "source": [ |
| 191 | + "history.clear()" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "markdown", |
| 196 | + "metadata": {}, |
| 197 | + "source": [ |
| 198 | + "## 🔗 Chaining\n", |
| 199 | + "\n", |
| 200 | + "We can easily combine this message history class with [LCEL Runnables](/docs/expression_language/how_to/message_history)\n", |
| 201 | + "\n", |
| 202 | + "To do this we will use one of [Google's Vertex AI chat models](https://python.langchain.com/docs/integrations/chat/google_vertex_ai_palm)\n" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "cell_type": "code", |
| 207 | + "execution_count": null, |
| 208 | + "metadata": {}, |
| 209 | + "outputs": [], |
| 210 | + "source": [ |
| 211 | + "# enable Vertex AI API\n", |
| 212 | + "!gcloud services enable aiplatform.googleapis.com" |
| 213 | + ] |
| 214 | + }, |
| 215 | + { |
| 216 | + "cell_type": "code", |
| 217 | + "execution_count": null, |
| 218 | + "metadata": {}, |
| 219 | + "outputs": [], |
| 220 | + "source": [ |
| 221 | + "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", |
| 222 | + "from langchain_core.runnables.history import RunnableWithMessageHistory\n", |
| 223 | + "from langchain_google_vertexai import ChatVertexAI" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "code", |
| 228 | + "execution_count": null, |
| 229 | + "metadata": { |
| 230 | + "tags": [] |
| 231 | + }, |
| 232 | + "outputs": [], |
| 233 | + "source": [ |
| 234 | + "GOOGLE_CLOUD_PROJECT_ID = \"\"\n", |
| 235 | + "\n", |
| 236 | + "prompt = ChatPromptTemplate.from_messages(\n", |
| 237 | + " [\n", |
| 238 | + " (\"system\", \"You are a helpful assistant.\"),\n", |
| 239 | + " MessagesPlaceholder(variable_name=\"history\"),\n", |
| 240 | + " (\"human\", \"{question}\"),\n", |
| 241 | + " ]\n", |
| 242 | + ")\n", |
| 243 | + "\n", |
| 244 | + "chain = prompt | ChatVertexAI(\n", |
| 245 | + " project=GOOGLE_CLOUD_PROJECT_ID, model_name=\"gemini-2.0-flash-exp\"\n", |
| 246 | + ")" |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "code", |
| 251 | + "execution_count": null, |
| 252 | + "metadata": { |
| 253 | + "tags": [] |
| 254 | + }, |
| 255 | + "outputs": [], |
| 256 | + "source": [ |
| 257 | + "chain_with_history = RunnableWithMessageHistory(\n", |
| 258 | + " chain,\n", |
| 259 | + " lambda session_id: PGChatMessageHistory.create_sync(\n", |
| 260 | + " pg_engine,\n", |
| 261 | + " session_id=session_id,\n", |
| 262 | + " table_name=TABLE_NAME,\n", |
| 263 | + " # schema_name=SCHEMA_NAME,\n", |
| 264 | + " ),\n", |
| 265 | + " input_messages_key=\"question\",\n", |
| 266 | + " history_messages_key=\"history\",\n", |
| 267 | + ")" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "code", |
| 272 | + "execution_count": null, |
| 273 | + "metadata": { |
| 274 | + "tags": [] |
| 275 | + }, |
| 276 | + "outputs": [], |
| 277 | + "source": [ |
| 278 | + "# This is where we configure the session id\n", |
| 279 | + "config = {\"configurable\": {\"session_id\": \"test_session\"}}" |
| 280 | + ] |
| 281 | + }, |
| 282 | + { |
| 283 | + "cell_type": "code", |
| 284 | + "execution_count": null, |
| 285 | + "metadata": { |
| 286 | + "tags": [] |
| 287 | + }, |
| 288 | + "outputs": [], |
| 289 | + "source": [ |
| 290 | + "chain_with_history.invoke({\"question\": \"Hi! I'm bob\"}, config=config)" |
| 291 | + ] |
| 292 | + }, |
| 293 | + { |
| 294 | + "cell_type": "code", |
| 295 | + "execution_count": null, |
| 296 | + "metadata": { |
| 297 | + "tags": [] |
| 298 | + }, |
| 299 | + "outputs": [], |
| 300 | + "source": [ |
| 301 | + "chain_with_history.invoke({\"question\": \"Whats my name\"}, config=config)" |
| 302 | + ] |
| 303 | + } |
| 304 | + ], |
| 305 | + "metadata": { |
| 306 | + "colab": { |
| 307 | + "provenance": [], |
| 308 | + "toc_visible": true |
| 309 | + }, |
| 310 | + "kernelspec": { |
| 311 | + "display_name": "Python 3 (ipykernel)", |
| 312 | + "language": "python", |
| 313 | + "name": "python3" |
| 314 | + }, |
| 315 | + "language_info": { |
| 316 | + "codemirror_mode": { |
| 317 | + "name": "ipython", |
| 318 | + "version": 3 |
| 319 | + }, |
| 320 | + "file_extension": ".py", |
| 321 | + "mimetype": "text/x-python", |
| 322 | + "name": "python", |
| 323 | + "nbconvert_exporter": "python", |
| 324 | + "pygments_lexer": "ipython3", |
| 325 | + "version": "3.11.4" |
| 326 | + } |
| 327 | + }, |
| 328 | + "nbformat": 4, |
| 329 | + "nbformat_minor": 4 |
| 330 | +} |
0 commit comments