diff --git a/libs/langchain-mongodb/langchain_mongodb/vectorstores.py b/libs/langchain-mongodb/langchain_mongodb/vectorstores.py index cefbb6b..83d9394 100644 --- a/libs/langchain-mongodb/langchain_mongodb/vectorstores.py +++ b/libs/langchain-mongodb/langchain_mongodb/vectorstores.py @@ -219,7 +219,6 @@ def __init__( text_key: MongoDB field that will contain the text for each document index_name: Existing Atlas Vector Search Index embedding_key: Field that will contain the embedding for each document - vector_index_name: Name of the Atlas Vector Search index relevance_score_fn: The similarity score used for the index Currently supported: 'euclidean', 'cosine', and 'dotProduct' dimensions: Number of dimensions in embedding. If the value is set and diff --git a/libs/langchain-mongodb/tests/unit_tests/test_vectorstores.py b/libs/langchain-mongodb/tests/unit_tests/test_vectorstores.py index b1962e7..de68463 100644 --- a/libs/langchain-mongodb/tests/unit_tests/test_vectorstores.py +++ b/libs/langchain-mongodb/tests/unit_tests/test_vectorstores.py @@ -96,7 +96,7 @@ def test_from_documents( documents, embedding_openai, collection=collection, - vector_index_name=INDEX_NAME, + index_name=INDEX_NAME, ) self._validate_search( vectorstore, collection, metadata=documents[2].metadata["c"] @@ -117,7 +117,7 @@ def test_from_texts( texts, embedding_openai, collection=collection, - vector_index_name=INDEX_NAME, + index_name=INDEX_NAME, ) self._validate_search(vectorstore, collection, metadata=None) @@ -136,7 +136,7 @@ def test_from_texts_with_metadatas( embedding_openai, metadatas=metadatas, collection=collection, - vector_index_name=INDEX_NAME, + index_name=INDEX_NAME, ) self._validate_search(vectorstore, collection, metadata=metadatas[2]["c"]) @@ -155,7 +155,7 @@ def test_from_texts_with_metadatas_and_pre_filter( embedding_openai, metadatas=metadatas, collection=collection, - vector_index_name=INDEX_NAME, + index_name=INDEX_NAME, ) collection._aggregate_result = list( filter( @@ -177,7 +177,7 @@ def test_mmr( texts, embedding=embedding_openai, collection=collection, - vector_index_name=INDEX_NAME, + index_name=INDEX_NAME, ) query = "foo" self._validate_search(