@@ -142,3 +142,29 @@ def merge(images, size):
142
142
return img
143
143
else :
144
144
raise ValueError ('in merge(images,size) images parameter must have dimensions: HxW or HxWx3 or HxWx4' )
145
+
146
+
147
+ '''Sugar for gradients histograms
148
+ # D_train_op = tf.train.AdamOptimizer(learning_rate=self.D_lr, beta1=self.beta1, beta2=self.beta2).\
149
+ # minimize(D_loss, var_list=D_vars)
150
+ D_opt = tf.train.AdamOptimizer(learning_rate=self.D_lr, beta1=self.beta1, beta2=self.beta2)
151
+ D_grads = tf.gradients(D_loss, D_vars)
152
+ D_grads_and_vars = list(zip(D_grads, D_vars))
153
+ D_train_op = D_opt.apply_gradients(grads_and_vars=D_grads_and_vars)
154
+
155
+ # G_train_op = tf.train.AdamOptimizer(learning_rate=self.G_lr, beta1=self.beta1, beta2=self.beta2).\
156
+ # minimize(G_loss, var_list=G_vars, global_step=global_step)
157
+ G_opt = tf.train.AdamOptimizer(learning_rate=self.G_lr, beta1=self.beta1, beta2=self.beta2)
158
+ G_grads = tf.gradients(G_loss, G_vars)
159
+ G_grads_and_vars = list(zip(G_grads, G_vars))
160
+ G_train_op = G_opt.apply_gradients(grads_and_vars=G_grads_and_vars, global_step=global_step)
161
+
162
+
163
+ for var in tf.trainable_variables():
164
+ tf.summary.histogram(var.op.name, var)
165
+
166
+ for grad, var in D_grads_and_vars:
167
+ tf.summary.histogram('D/' + var.name + '/gradient', grad)
168
+ for grad, var in G_grads_and_vars:
169
+ tf.summary.histogram('G/' + var.name + '/gradient', grad)
170
+ '''
0 commit comments