|
| 1 | +@file:Suppress("UNCHECKED_CAST") |
| 2 | + |
| 3 | +import java.util.UUID |
| 4 | +import kotlin.math.pow |
| 5 | + |
| 6 | +/* |
| 7 | +Open Closed Principle |
| 8 | +
|
| 9 | +Este principio establece que una entidad de software (clase, módulo, función, etc) |
| 10 | +debe quedar abierta para su extensión, pero cerrada para su modificación. |
| 11 | +
|
| 12 | +Con abierta para su extensión, nos quiere decir que una entidad de software debe tener la capacidad |
| 13 | +de adaptarse a los cambios y nuevas necesidades de una aplicación, pero con la segunda parte de “cerrada |
| 14 | +para su modificación” nos da a entender que la adaptabilidad de la entidad no debe darse |
| 15 | +como resultado de la modificación del core de dicha entidad si no como resultado de un diseño |
| 16 | +que facilite la extensión sin modificaciones. |
| 17 | +
|
| 18 | +*/ |
| 19 | + |
| 20 | +// ejemplo de lo que no debe hacerse |
| 21 | + |
| 22 | +enum class AuthProviders{ |
| 23 | + GOOGLE, |
| 24 | + FACEBOOK, |
| 25 | + GITHUB, |
| 26 | + APPLE |
| 27 | +} |
| 28 | + |
| 29 | +data class UserData(val userID:UUID,var name:String) |
| 30 | + |
| 31 | + |
| 32 | +class AuthService{ |
| 33 | + fun loginProvider(provider:AuthProviders):UserData{ |
| 34 | + return when(provider){ |
| 35 | + AuthProviders.GOOGLE-> signInWithGoogle() |
| 36 | + AuthProviders.FACEBOOK-> signInWithFacebook() |
| 37 | + AuthProviders.GITHUB-> signInWithGithub() |
| 38 | + AuthProviders.APPLE-> signInWithApple() |
| 39 | + } |
| 40 | + } |
| 41 | + |
| 42 | + private fun signInWithGoogle():UserData{ |
| 43 | + return UserData(UUID.randomUUID(),"Google User") |
| 44 | + } |
| 45 | + |
| 46 | + private fun signInWithFacebook():UserData{ |
| 47 | + return UserData(UUID.randomUUID(),"Facebook User") |
| 48 | + } |
| 49 | + |
| 50 | + private fun signInWithGithub():UserData{ |
| 51 | + return UserData(UUID.randomUUID(),"Github User") |
| 52 | + } |
| 53 | + |
| 54 | + private fun signInWithApple():UserData{ |
| 55 | + return UserData(UUID.randomUUID(),"Apple User") |
| 56 | + } |
| 57 | +} |
| 58 | + |
| 59 | +/* El Principio SOLID Open Closed se suele resolver utilizando polimorfismo, |
| 60 | + clases abstractas, herencia y interfaces en el ejemplo usando herencia*/ |
| 61 | + |
| 62 | +open class AuthProvider{ |
| 63 | + open fun login():UserData{ |
| 64 | + return UserData(UUID.randomUUID(),"User") |
| 65 | + } |
| 66 | +} |
| 67 | + |
| 68 | +// creamos los diferentes provedores |
| 69 | +class GoogleProvider:AuthProvider(){ |
| 70 | + override fun login():UserData{ |
| 71 | + return UserData(UUID.randomUUID(),"Google User") |
| 72 | + } |
| 73 | +} |
| 74 | + |
| 75 | +class AppleProvider:AuthProvider(){ |
| 76 | + override fun login():UserData{ |
| 77 | + return UserData(UUID.randomUUID(),"Apple User") |
| 78 | + } |
| 79 | +} |
| 80 | + |
| 81 | +// refactorizamos la clase autService |
| 82 | +class AuthProdService{ |
| 83 | + fun loginProvider(provider:AuthProvider):UserData{ |
| 84 | + return provider.login() |
| 85 | + } |
| 86 | +} |
| 87 | +// opcional crear singlenton |
| 88 | +object ProvidersSinglenton{ |
| 89 | + val apple=AppleProvider() |
| 90 | + val google=GoogleProvider() |
| 91 | + |
| 92 | +} |
| 93 | + |
| 94 | + |
| 95 | + |
| 96 | +fun exampleOpenClosed(){ |
| 97 | + val authService = AuthService() |
| 98 | + val userData = authService.loginProvider(AuthProviders.GOOGLE) |
| 99 | + println(userData) |
| 100 | + // usando principio |
| 101 | + val authProd=AuthProdService() |
| 102 | + val userApple=authProd.loginProvider(ProvidersSinglenton.apple) |
| 103 | + val useGoogle=authProd.loginProvider(ProvidersSinglenton.google) |
| 104 | + println(userApple) |
| 105 | + println(useGoogle) |
| 106 | +} |
| 107 | + |
| 108 | +//ejercicio extra experimiento con genericos sustituir la T por el tipo que quieras |
| 109 | +interface Operation{ |
| 110 | + fun<T> execute(num1:T,num2:T):T |
| 111 | +} |
| 112 | +//crear clases de las operaciones borrar los ifs y solo dejar la suma |
| 113 | +class Add:Operation{ |
| 114 | + override fun <T> execute(num1: T, num2: T): T { |
| 115 | + if(num1 is Int && num2 is Int) return (num1+num2) as T |
| 116 | + if (num1 is Double && num2 is Double) return (num1+num2) as T |
| 117 | + if (num1 is Float && num2 is Float) return (num1+num2) as T |
| 118 | + if (num1 is Long && num2 is Long) return (num1+num2) as T |
| 119 | + throw Exception("calculate type not supported") |
| 120 | + } |
| 121 | + |
| 122 | +} |
| 123 | + |
| 124 | +class Rest:Operation { |
| 125 | + override fun <T> execute(num1: T, num2: T): T { |
| 126 | + if (num1 is Int && num2 is Int) return (num1 - num2) as T |
| 127 | + if (num1 is Double && num2 is Double) return (num1 - num2) as T |
| 128 | + if (num1 is Float && num2 is Float) return (num1 - num2) as T |
| 129 | + if (num1 is Long && num2 is Long) return (num1 - num2) as T |
| 130 | + throw Exception("calculate type not supported") |
| 131 | + } |
| 132 | +} |
| 133 | + |
| 134 | +class Mul:Operation { |
| 135 | + override fun <T> execute(num1: T, num2: T): T { |
| 136 | + if (num1 is Int && num2 is Int) return (num1 * num2) as T |
| 137 | + if (num1 is Double && num2 is Double) return (num1 * num2) as T |
| 138 | + if (num1 is Float && num2 is Float) return (num1 * num2) as T |
| 139 | + if (num1 is Long && num2 is Long) return (num1 * num2) as T |
| 140 | + throw Exception("calculate type not supported") |
| 141 | + } |
| 142 | +} |
| 143 | + |
| 144 | +class Div:Operation { |
| 145 | + override fun <T> execute(num1: T, num2: T): T { |
| 146 | + if (num1 is Int && num2 is Int) return (num1 / num2) as T |
| 147 | + if (num1 is Double && num2 is Double) return (num1 / num2) as T |
| 148 | + if (num1 is Float && num2 is Float) return (num1 / num2) as T |
| 149 | + if (num1 is Long && num2 is Long) return (num1 / num2) as T |
| 150 | + throw Exception("calculate type not supported") |
| 151 | + } |
| 152 | +} |
| 153 | + |
| 154 | +class Calculate{ |
| 155 | + fun <T>caculate(num1:T,num2:T,operation:Operation):T{ |
| 156 | + if (num1 is Int && num2 is Int) return operation.execute(num1,num2) |
| 157 | + if (num1 is Double && num2 is Double) return operation.execute(num1,num2) |
| 158 | + if (num1 is Float && num2 is Float) return operation.execute(num1,num2) |
| 159 | + if (num1 is Long && num2 is Long) return operation.execute(num1,num2) |
| 160 | + throw Exception("calculate type not supported") |
| 161 | + } |
| 162 | +} |
| 163 | + |
| 164 | +// se cumple el principio open closed porque la clase operation puede ser extendida pero la |
| 165 | +//clase calculate no puede ser extendida y no cambia su funcionamiento |
| 166 | + |
| 167 | +class Pow:Operation{ |
| 168 | + override fun <T> execute(num1: T, num2: T): T { |
| 169 | + if (num1 is Int && num2 is Int) return (num1.toDouble().pow(num2.toDouble())) as T |
| 170 | + if (num1 is Double && num2 is Double) return (num1.pow(num2)) as T |
| 171 | + if (num1 is Float && num2 is Float) return (num1.pow(num2)) as T |
| 172 | + if (num1 is Long && num2 is Long) return (num1.toFloat().pow(num2.toFloat())) as T |
| 173 | + throw Exception("calculate type not supported") |
| 174 | + } |
| 175 | + |
| 176 | +} |
| 177 | + |
| 178 | + |
| 179 | + |
| 180 | +// encapsular las operaciones en un singlenton para mayor comodidad opcional |
| 181 | +object OperationSingleton{ |
| 182 | + val add=Add() |
| 183 | + val rest=Rest() |
| 184 | + val mul=Mul() |
| 185 | + val div=Div() |
| 186 | + val pow=Pow() |
| 187 | +} |
| 188 | + |
| 189 | +fun calculatorExamples(){ |
| 190 | + val calculator=Calculate() |
| 191 | + println("Add: "+calculator.caculate<Double>(2.5,2.5,OperationSingleton.add)) |
| 192 | + println("Mul: "+calculator.caculate<Float>(2.5f,2.5f,OperationSingleton.mul)) |
| 193 | + println("Div: "+calculator.caculate<Int>(2,2,OperationSingleton.div)) |
| 194 | + println("Pow: "+calculator.caculate<Int>(2,2,OperationSingleton.pow)) |
| 195 | +} |
| 196 | + |
| 197 | + |
| 198 | + |
| 199 | + |
| 200 | +fun main() { |
| 201 | + exampleOpenClosed() |
| 202 | + calculatorExamples() |
| 203 | +} |
| 204 | + |
0 commit comments