|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Alphabet recognition Implementation" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "### Libraries needed" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 3, |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "from collections import deque\n", |
| 24 | + "import numpy as np\n", |
| 25 | + "import cv2 \n", |
| 26 | + "from keras.models import load_model\n", |
| 27 | + "import pyttsx3\n", |
| 28 | + "engine = pyttsx3.init()\n", |
| 29 | + " " |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "### Important variables used in prgm" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 4, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "model = load_model('best_model.h5') #loadig the ocr model created earlier\n", |
| 46 | + "letters = {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e', 5: 'f', 6: 'g', 7: 'h', 8: 'i', 9: 'j', 10: 'k', 11: 'l',\n", |
| 47 | + " 12: 'm', 13: 'n', 14: 'o', 15: 'p', 16: 'q', 17: 'r', 18: 's', 19: 't', 20: 'u', 21: 'v', 22: 'w',\n", |
| 48 | + " 23: 'x', 24: 'y', 25: 'z', 26: ''}\n", |
| 49 | + "redLower = np.array([170, 100, 60])\n", |
| 50 | + "redUpper = np.array([180, 255, 255]) # we can set this from the chart given in stack overflow\n", |
| 51 | + "\n", |
| 52 | + "kernel = np.ones((5, 5), np.uint8)\n", |
| 53 | + "\n", |
| 54 | + "# define blackboard and alphabets\n", |
| 55 | + "blackboard = np.zeros((480, 640, 3), dtype=np.uint8)\n", |
| 56 | + "alphabet = np.zeros((200, 200, 3), dtype=np.uint8)\n", |
| 57 | + "points = deque(maxlen=512)\n", |
| 58 | + "sounddict={'a':0,'b':0,'c':0,'d':0,'e':0,'f':0,'g':0,'h':0,'i':0,'j':0,'k':0,'l':0,'m':0,'n':0,'o':0,'p':0,'q':0,'r':0,'s':0,'t':0,\n", |
| 59 | + " 'u':0,'v':0,'w':0,'x':0,'y':0,'z':0}\n", |
| 60 | + "\n", |
| 61 | + "\n", |
| 62 | + "counter=0\n", |
| 63 | + "cap = cv2.VideoCapture(0) # camera object\n", |
| 64 | + "prediction = 26" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "metadata": {}, |
| 70 | + "source": [ |
| 71 | + "### Camera working ( main steps )" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": null, |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "while True:\n", |
| 81 | + " ret, frame = cap.read()\n", |
| 82 | + " frame = cv2.flip(frame, 1) # so that we can see the proper image while moving our pen \n", |
| 83 | + " hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # changing the original frame to hsv\n", |
| 84 | + " gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # changing the original frame to grayscale\n", |
| 85 | + " \n", |
| 86 | + " # Detecting which pixel value falls under red color boundaries\n", |
| 87 | + " red = cv2.inRange(hsv, redLower, redUpper)\n", |
| 88 | + " \n", |
| 89 | + "# cv2.imshow(\"Initial InRange Image\",red)\n", |
| 90 | + "\n", |
| 91 | + " # Preprocessing the input inRange Image\n", |
| 92 | + " red = cv2.erode(red, kernel)# erosion\n", |
| 93 | + " red = cv2.morphologyEx(red, cv2.MORPH_OPEN, kernel) # opening\n", |
| 94 | + " red = cv2.dilate(red, kernel)# dilation\n", |
| 95 | + " \n", |
| 96 | + " cv2.imshow(\"red\",red)\n", |
| 97 | + "\n", |
| 98 | + " # find countours in the image\n", |
| 99 | + " cnts, _ = cv2.findContours(red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n", |
| 100 | + " \n", |
| 101 | + " #debug\n", |
| 102 | + " a=cv2.cvtColor(red,cv2.COLOR_GRAY2BGR)\n", |
| 103 | + " cv2.drawContours(a, cnts, -1, (0, 255, 0), 3) \n", |
| 104 | + " cv2.imshow(\"Drawing contour\",a)\n", |
| 105 | + " \n", |
| 106 | + " center = None\n", |
| 107 | + " # if any countours were found\n", |
| 108 | + " if len(cnts) > 0:\n", |
| 109 | + " cnt = sorted(cnts, key=cv2.contourArea, reverse=True)[0]\n", |
| 110 | + " ((x, y), radius) = cv2.minEnclosingCircle(cnt)\n", |
| 111 | + " cv2.circle(frame, (int(x), int(y),), int(radius), (125, 344, 278), 2)\n", |
| 112 | + " \n", |
| 113 | + " \n", |
| 114 | + " M = cv2.moments(cnt)\n", |
| 115 | + " center = (int(M['m10'] / M['m00']), int(M['m01'] / M['m00']))\n", |
| 116 | + " points.appendleft(center)\n", |
| 117 | + " # if no countours were found means if there is no red coloured object in the frame.\n", |
| 118 | + " elif len(cnts) == 0:\n", |
| 119 | + " if len(points) != 0: #if there are points in deque and we have removed the pen . \n", |
| 120 | + " blackboard_gray = cv2.cvtColor(blackboard, cv2.COLOR_BGR2GRAY)\n", |
| 121 | + " blur = cv2.medianBlur(blackboard_gray, 15)\n", |
| 122 | + " blur = cv2.GaussianBlur(blur, (5, 5), 0)\n", |
| 123 | + " thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]\n", |
| 124 | + " cv2.imshow(\"Thresh\", thresh)\n", |
| 125 | + " blackboard_cnts = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[0]\n", |
| 126 | + " \n", |
| 127 | + " #debug\n", |
| 128 | + " bb=cv2.cvtColor(thresh,cv2.COLOR_GRAY2BGR)\n", |
| 129 | + " cv2.drawContours(bb, blackboard_cnts, -1, (0, 255, 0), 3) \n", |
| 130 | + " cv2.imshow(\"final_thresh_with_contour\",bb)\n", |
| 131 | + "\n", |
| 132 | + " if len(blackboard_cnts) >= 1:\n", |
| 133 | + " cnt = sorted(blackboard_cnts, key=cv2.contourArea, reverse=True)[0] # first sort all the contours and find the biggest contour\n", |
| 134 | + "\n", |
| 135 | + " if cv2.contourArea(cnt) > 1000: # I area of the selected countour is greater than 1000 , to maintain that there is no noise selected as countour.\n", |
| 136 | + " x, y, w, h = cv2.boundingRect(cnt)\n", |
| 137 | + " alphabet = blackboard_gray[y - 10:y + h + 10, x - 10:x + w + 10]\n", |
| 138 | + " try:\n", |
| 139 | + " img = cv2.resize(alphabet, (28, 28))\n", |
| 140 | + " cv2.imshow(\"alphabet\",alphabet) # this is the alphabet image selected that we will give our OCR as an input . \n", |
| 141 | + " except cv2.error as e:\n", |
| 142 | + " points = deque(maxlen=512)\n", |
| 143 | + " blackboard = np.zeros((480, 640, 3), dtype=np.uint8)\n", |
| 144 | + " continue\n", |
| 145 | + "\n", |
| 146 | + " img = np.array(img)\n", |
| 147 | + " img = img.astype('float32') / 255\n", |
| 148 | + " prediction = model.predict(img.reshape(1, 28, 28))[0]\n", |
| 149 | + " prediction = np.argmax(prediction)\n", |
| 150 | + " # try catch for sound \n", |
| 151 | + " try:\n", |
| 152 | + " engine.setProperty('rate', 138) # setting up new voice rate\n", |
| 153 | + " volume = engine.getProperty('volume') #getting to know current volume level (min=0 and max=1)\n", |
| 154 | + " engine.setProperty('volume',0.5) \n", |
| 155 | + " engine.say(\"Our model Predicted the alphabet as\")\n", |
| 156 | + " engine.setProperty('volume',1.0) # setting up volume level between 0 and 1\n", |
| 157 | + " engine.say(str(letters[int(prediction)]))\n", |
| 158 | + " print(\"Our model Predicted the alphabet as \"+str(letters[int(prediction)]))\n", |
| 159 | + " engine.runAndWait()\n", |
| 160 | + " except Exception as e:\n", |
| 161 | + " print(\"There is error in text to speech\")\n", |
| 162 | + "\n", |
| 163 | + " # Empty the point deque and also blackboard\n", |
| 164 | + " points = deque(maxlen=512)\n", |
| 165 | + " blackboard = np.zeros((480, 640, 3), dtype=np.uint8)\n", |
| 166 | + "\n", |
| 167 | + " # connect the detected points with line\n", |
| 168 | + " for i in range(1, len(points)):\n", |
| 169 | + " if points[i - 1] is None or points[i] is None:\n", |
| 170 | + " continue\n", |
| 171 | + " cv2.line(frame, points[i - 1], points[i], (0, 0, 0), 2)\n", |
| 172 | + " cv2.line(blackboard, points[i - 1], points[i], (255, 255, 255), 8)\n", |
| 173 | + "\n", |
| 174 | + " cv2.putText(frame, \"Prediction: \" + str(letters[int(prediction)]), (20, 400), cv2.FONT_HERSHEY_SIMPLEX, 0.8,\n", |
| 175 | + " (255, 255, 255), 2)\n", |
| 176 | + " cv2.imshow(\"Alphabet Recognition System\", frame)\n", |
| 177 | + " if cv2.waitKey(5) == 13: # if I press Enter it will break \n", |
| 178 | + " break\n", |
| 179 | + "cap.release()\n", |
| 180 | + "cv2.destroyAllWindows()" |
| 181 | + ] |
| 182 | + } |
| 183 | + ], |
| 184 | + "metadata": { |
| 185 | + "kernelspec": { |
| 186 | + "display_name": "PyCharm (Alphabet Recognisation _Using_HandGestures)", |
| 187 | + "language": "python", |
| 188 | + "name": "pycharm-d299a7e7" |
| 189 | + }, |
| 190 | + "language_info": { |
| 191 | + "codemirror_mode": { |
| 192 | + "name": "ipython", |
| 193 | + "version": 3 |
| 194 | + }, |
| 195 | + "file_extension": ".py", |
| 196 | + "mimetype": "text/x-python", |
| 197 | + "name": "python", |
| 198 | + "nbconvert_exporter": "python", |
| 199 | + "pygments_lexer": "ipython3", |
| 200 | + "version": "3.8.5" |
| 201 | + } |
| 202 | + }, |
| 203 | + "nbformat": 4, |
| 204 | + "nbformat_minor": 4 |
| 205 | +} |
0 commit comments