-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtest_on_wider.py
163 lines (147 loc) · 6.59 KB
/
test_on_wider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from __future__ import print_function
import argparse
import sys
import os
import time
import numpy as np
import mxnet as mx
from mxnet import ndarray as nd
import cv2
import subprocess
from essh_detector import ESSHDetector
from logger import logger
from config import config, default, generate_config
#from rcnn.tools.test_rcnn import test_rcnn
#from rcnn.tools.test_rpn import test_rpn
from rcnn.processing.bbox_transform import nonlinear_pred, clip_boxes
from rcnn.processing.generate_anchor import generate_anchors_fpn, anchors_plane
from rcnn.processing.nms import gpu_nms_wrapper
from rcnn.processing.bbox_transform import bbox_overlaps
from rcnn.dataset import widerface
def parse_args():
parser = argparse.ArgumentParser(description='Test a Faster R-CNN network')
# general
parser.add_argument('--network', help='network name', default=default.network, type=str)
parser.add_argument('--dataset', help='dataset name', default=default.dataset, type=str)
args, rest = parser.parse_known_args()
generate_config(args.network, args.dataset)
parser.add_argument('--image_set', help='image_set name', default=default.test_image_set, type=str)
parser.add_argument('--root_path', help='output data folder', default=default.root_path, type=str)
parser.add_argument('--dataset_path', help='dataset path', default=default.dataset_path, type=str)
parser.add_argument('--method_name', help='method name for official WIDER toolbox', default='ESSH-R50', type=str)
# testing
parser.add_argument('--prefix', help='model to test with', default='model/essh-r50', type=str)
parser.add_argument('--epoch', help='model to test with', default=0, type=int)
parser.add_argument('--gpu', help='GPU device to test with', default=0, type=int)
parser.add_argument('--output', help='output folder', default=os.path.join('./output', 'essh-r50'), type=str)
parser.add_argument('--pyramid', help='enable pyramid test', action='store_true')
# rcnn
parser.add_argument('--vis', help='turn on visualization', action='store_true')
parser.add_argument('--thresh', help='valid detection threshold', default=0.02, type=float)
parser.add_argument('--shuffle', help='shuffle data on visualization', action='store_true')
parser.add_argument('--has_rpn', help='generate proposals on the fly', action='store_true', default=True)
parser.add_argument('--proposal', help='can be ss for selective search or rpn', default='rpn', type=str)
args = parser.parse_args()
return args
detector = None
args = None
def get_boxes(roi, pyramid):
im = cv2.imread(roi['image'])
if not pyramid:
target_size = 1200
max_size = 1600
im_shape = im.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size:
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
scales = [im_scale]
else:
# TEST_SCALES = [500, 800, 1200, 1600]
TEST_SCALES = [500, 800, 1100, 1400, 1700]
target_size = 800
max_size = 1200
im_shape = im.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size:
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
scales = [float(scale)/target_size*im_scale for scale in TEST_SCALES]
boxes = detector.detect(im, threshold=args.thresh, scales = scales)
return boxes
def test(args):
print('test with', args)
global detector
output_folder = args.output
if not os.path.exists(output_folder):
os.mkdir(output_folder)
detector = ESSHDetector(args.prefix, args.epoch, args.gpu, test_mode=True)
imdb = eval(args.dataset)(args.image_set, args.root_path, args.dataset_path)
roidb = imdb.gt_roidb()
gt_overlaps = np.zeros(0)
overall = [0.0, 0.0]
gt_max = np.array( (0.0, 0.0) )
num_pos = 0
for i in xrange(len(roidb)):
if i%10==0:
print('processing', i, file=sys.stderr)
roi = roidb[i]
boxes = get_boxes(roi, args.pyramid)
gt_boxes = roidb[i]['boxes'].copy()
gt_areas = (gt_boxes[:, 2] - gt_boxes[:, 0] + 1) * (gt_boxes[:, 3] - gt_boxes[:, 1] + 1)
num_pos += gt_boxes.shape[0]
overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float))
#print(im_info, gt_boxes.shape, boxes.shape, overlaps.shape, file=sys.stderr)
_gt_overlaps = np.zeros((gt_boxes.shape[0]))
if boxes.shape[0]>0:
_gt_overlaps = overlaps.max(axis=0)
#print('max_overlaps', _gt_overlaps, file=sys.stderr)
for j in range(len(_gt_overlaps)):
if _gt_overlaps[j]>config.TEST.IOU_THRESH:
continue
print(j, 'failed', gt_boxes[j], 'max_overlap:', _gt_overlaps[j], file=sys.stderr)
# append recorded IoU coverage level
found = (_gt_overlaps > config.TEST.IOU_THRESH).sum()
_recall = found / float(gt_boxes.shape[0])
print('recall', _recall, gt_boxes.shape[0], boxes.shape[0], gt_areas, file=sys.stderr)
overall[0]+=found
overall[1]+=gt_boxes.shape[0]
#gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps))
#_recall = (gt_overlaps >= threshold).sum() / float(num_pos)
_recall = float(overall[0])/overall[1]
print('recall_all', _recall, file=sys.stderr)
_vec = roidb[i]['image'].split('/')
out_dir = os.path.join(output_folder, _vec[-2])
if not os.path.exists(out_dir):
os.mkdir(out_dir)
out_file = os.path.join(out_dir, _vec[-1].replace('jpg', 'txt'))
with open(out_file, 'w') as f:
name = '/'.join(roidb[i]['image'].split('/')[-2:])
f.write("%s\n"%(name))
f.write("%d\n"%(boxes.shape[0]))
for b in range(boxes.shape[0]):
box = boxes[b]
f.write("%d %d %d %d %g \n"%(box[0], box[1], box[2]-box[0], box[3]-box[1], box[4]))
print('Evaluating detections using official WIDER toolbox...')
path = os.path.join(os.path.dirname(__file__), 'wider_eval_tools')
eval_output_path = os.path.join(path, 'wider_plots')
if not os.path.isdir(eval_output_path):
os.mkdir(eval_output_path)
cmd = 'cd {} && '.format(path)
cmd += 'matlab -nodisplay -nodesktop '
cmd += '-r "dbstop if error; '
cmd += 'wider_eval(\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
.format(args.output, args.method_name, eval_output_path)
print('Running:\n{}'.format(cmd))
subprocess.call(cmd, shell=True)
def main():
global args
args = parse_args()
logger.info('Called with argument: %s' % args)
test(args)
if __name__ == '__main__':
main()