-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2024-07-02
206 lines (157 loc) · 5.95 KB
/
2024-07-02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
Dave Husk
I'm starting to upload all my stuff.... god help me trying to organize it all...
"""
import math
import sympy as sp
from fractions import Fraction
# 1. Fibonacci-Inspired Salmon Equation Solver
def salmon_equation_solver(a, b, c):
delta = b**2 - 4*a*c
if delta == 5:
root1 = (-b + math.sqrt(delta)) / (2*a)
root2 = (-b - math.sqrt(delta)) / (2*a)
return (root1, root2)
else:
return "Error: Discriminant not equal to 5"
# 2. Continued Fraction Representation of h
def continued_fraction_h(n):
h_cf = Fraction(1, 1)
for _ in range(n-1):
h_cf = 1 + 1 / h_cf
return h_cf
# 3. Galois Group Symmetry
def galois_group_symmetry(a, b, c):
x = sp.symbols('x')
poly = sp.Poly(a*x**3 - 3*b*x**2 + c*x - 1, x)
galois_group = poly.galois_group()
return galois_group
# 4. Diophantine Equation Solver
def diophantine_solver(a, b, c):
x, y = sp.symbols('x y')
diophantine_eq = sp.Eq(a*x + b*y, c)
solutions = sp.diophantine(diophantine_eq)
return solutions
# Define the variables for testing
a, b, c = 1, -3, 1
# Test the Salmon equation solver
roots = salmon_equation_solver(a, b, c)
# Test the continued fraction representation
n = 5
h_cf = continued_fraction_h(n)
# Test the Galois group symmetry
galois_group = galois_group_symmetry(a, b, c)
# Test the Diophantine equation solver
diophantine_solutions = diophantine_solver(3, 5, 7)
roots, h_cf, galois_group, diophantine_solutions
"""((2.618033988749895, 0.3819660112501051), Fraction(8, 5), (PermutationGroup([
(0 1 2),
(2)(0 1)]), False), {(5*t_0 + 14, -3*t_0 - 7)})"""
import numpy as np
class ThoughtTree:
def __init__(self, token, response_matrix):
self.token = token
self.response_matrix = response_matrix
self.children = []
def add_child(self, child):
self.children.append(child)
def reflect(self, freq_matrix, input_token):
# Calculate the Hurwitz Zeta frequency of the current node
zeta_freq = np.dot(freq_matrix, self.token)
# Generate a response based on the input token and the Hurwitz Zeta frequency
response = np.dot(self.response_matrix, input_token)
response = np.argmax(response)
# Reflect on the children nodes based on the Hurwitz Zeta frequency
for child in self.children:
child.reflect(freq_matrix, response)
def respond(self, input_token):
# Calculate the response based on the input token and the response matrix
response = np.dot(self.response_matrix, input_token)
response = np.argmax(response)
# Return the response
return response
def execute(self, indent=0):
print(' ' * indent + str(self.token))
for child in self.children:
child.execute(indent + 1)
# Create the frequency matrix
freq_matrix = np.random.rand(10, 10)
# Create the response matrix
response_matrix = np.random.rand(10, 10)
# Create the thought tree
root = ThoughtTree(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), response_matrix)
child1 = ThoughtTree(np.array([11, 12, 13, 14, 15, 16, 17, 18, 19, 20]), response_matrix)
child2 = ThoughtTree(np.array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30]), response_matrix)
child3 = ThoughtTree(np.array([31, 32, 33, 34, 35, 36, 37, 38, 39, 40]), response_matrix)
root.add_child(child1)
root.add_child(child2)
child1.add_child(child3)
# Test the thought tree
input_token = np.array([41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
response = root.respond(input_token)
response_result = response
# Reflect on the thought tree
root.reflect(freq_matrix, input_token)
# Execute the thought tree
execute_result = root.execute()
response_result, execute_result
"""
[ 1 2 3 4 5 6 7 8 9 10]
[11 12 13 14 15 16 17 18 19 20]
[31 32 33 34 35 36 37 38 39 40]
[21 22 23 24 25 26 27 28 29 30]
(2, None)
"""
import numpy as np
import random
class ThoughtTree:
def __init__(self, token, response_matrix):
self.token = token
self.response_matrix = response_matrix
self.children = []
def add_child(self, child):
self.children.append(child)
def reflect(self, freq_matrix, input_token):
# Calculate the Hurwitz Zeta frequency of the current node
zeta_freq = np.dot(freq_matrix, self.token)
# Generate a response based on the input token and the Hurwitz Zeta frequency
response = np.dot(self.response_matrix, input_token)
response = np.argmax(response)
# Reflect on the children nodes based on the Hurwitz Zeta frequency
for child in self.children:
child.reflect(freq_matrix, response)
def respond(self, input_token):
# Calculate the response based on the input token and the response matrix
response = np.dot(self.response_matrix, input_token)
response = np.argmax(response)
# Return the response
return response
def execute(self, indent=0):
print(' ' * indent + str(self.token))
for child in self.children:
child.execute(indent + 1)
# Create the frequency matrix
freq_matrix = np.random.rand(10, 10)
# Create the response matrix
response_matrix = np.random.rand(10, 10)
# Create the thought tree
root = ThoughtTree(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), response_matrix)
child1 = ThoughtTree(np.array([11, 12, 13, 14, 15, 16, 17, 18, 19, 20]), response_matrix)
child2 = ThoughtTree(np.array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30]), response_matrix)
child3 = ThoughtTree(np.array([31, 32, 33, 34, 35, 36, 37, 38, 39, 40]), response_matrix)
root.add_child(child1)
root.add_child(child2)
child1.add_child(child3)
# Test the thought tree
input_token = np.array([41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
response = root.respond(input_token)
response, root.execute()
# Reflect on the thought tree
root.reflect(freq_matrix, input_token)
"""
[ 1 2 3 4 5 6 7 8 9 10]
[11 12 13 14 15 16 17 18 19 20]
[31 32 33 34 35 36 37 38 39 40]
[21 22 23 24 25 26 27 28 29 30]
(6, None)
"""