Open
Description
Description
I would like to use Lakehouse monitoring to monitor a forecasting model (using the inference log).
While creating the monitor I specify the slicing expressions to be a list of strings.
Reproduction
timestamp_col: str = "timestamp"
granularities:list[str] = ["1 day"]
model_id_col: str = "model_name"
prediction_col: str = "forecast"
label_col: str = "target"
problem_type: MonitorInferenceLogProblemType= MonitorInferenceLogProblemType.PROBLEM_TYPE_REGRESSION
...
slicing_exprs: list[str] | None = ["horizon_category", "model_name"]
While viewing the deployed dashboard I notice that the slicing expressions are not applied, for example in the granularity_selected table, the sql query to display metrics includes..
...
AND isnull(slice_key) AND isnull(slice_value) -- default to "No Slice"
...
Expected behavior
The generated dashboard allows me to slice and display metrics per horizon_category
and model_name
.
Is it a regression?
N/A
Debug Logs
N/A
Other Information
N/A
Additional context
https://databricks-sdk-py.readthedocs.io/en/stable/workspace/catalog/quality_monitors.html
Metadata
Metadata
Assignees
Labels
No labels