-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWigCreateAmbiJS.m
149 lines (134 loc) · 5.36 KB
/
WigCreateAmbiJS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
function WigCreateAmbiJS(dec,az,elev,norm,HV,pname)
% WigCreateAmbiJS(dec,az,elev,norm,HV,pname)
%
% Create a JS effect that implements an Ambisonic Decoder. Dec is the 2D
% decoding matrix. Az and Elev are the speaker positions (used for
% labelling the ins outs and 'norm' is the normalisation scheme/channel
% ordering. This can be 'SN3D', 'N3D' or 'FuMa'. Channel ordering is ACN
% except for 'FuMa'. HV can either be '2D' or '3D' and is used to provide
% the correct scaling for MaxRE and inphase decoders from your coefficients
% which are assumed to be MaxRV. 'pname' is the name of the plugin that you
% wish to create
[n,m] = size(dec);
order = floor(sqrt(n-1));
nspeak = m;
torder = num2str(order);
tnspeak = num2str(nspeak);
disp(['This is an order ',num2str(order),' decoder']);
disp(['For a ',num2str(nspeak)',' speaker array']);
fid = fopen(pname,'w');
% Initial Comments
fprintf(fid,['// an order ',num2str(order),' decoder\n// For a ',num2str(nspeak),' speaker array\n\n']);
% Name of plugin
fprintf(fid,['desc:Order ',torder,', ',tnspeak,' Speaker Decoder\n\n']);
fprintf(fid,'slider1:2<0,2,1{Strict,Cardioid,Energy}>Decode Type\n\n');
fprintf(fid,['@init\nbpos=0;\ncsp1 = 1024;\nlength_of_csps = ',num2str((order+1)^2),';\n']);
for i=2:nspeak
fprintf(fid,'end_of_csps = csp%d + length_of_csps;\ncsp%d = end_of_csps;\n',i-1,i);
end
% write in the actual decoder values
for i=1:nspeak
for j=1:(order+1)^2
fprintf(fid,'csp%d[%d] = %1.10f;',i,j-1,dec(j,i));
end
fprintf(fid,'\n');
end
fprintf(fid,'\n');
% rE 2D | 0 1 2 3 4
% ------------------------------------------------
% 1 | 1 0.707
% 2 | 1 0.866 0.500
% 3 | 1 0.924 0.707 0.383
% 4 | 1 0.951 0.809 0.588 0.309
%
%
% rE 3D | 0 1 2 3 4
% ------------------------------------------------
% 1 | 1 0.577
% 2 | 1 0.775 0.400
% 3 | 1 0.862 0.612 0.305
% 4 | 1 0.906 0.732 0.501 0.246
% IP 2D | 0 1 2 3 4
% ------------------------------------------------
% 1 | 1 0.500
% 2 | 1 0.667 0.167
% 3 | 1 0.750 0.300 0.050
% 4 | 1 0.800 0.400 0.114 0.014
%
%
% IP 3D | 0 1 2 3 4
% ------------------------------------------------
% 1 | 1 0.333
% 2 | 1 0.500 0.100
% 3 | 1 0.600 0.200 0.029
% 4 | 1 0.667 0.286 0.071 0.008
InPhase2D(1,:) = [1 0.5 0 0 0];
InPhase2D(2,:) = [1 0.667 0.167 0 0];
InPhase2D(3,:) = [1 0.750 0.300 0.05 0];
InPhase2D(4,:) = [1 0.800 0.400 0.114 0.014];
InPhase3D(1,:) = [1 0.333 0 0 0];
InPhase3D(2,:) = [1 0.5 0.1 0 0];
InPhase3D(3,:) = [1 0.600 0.200 0.029 0];
InPhase3D(4,:) = [1 0.667 0.286 0.071 0.008];
MaxrE2D(1,:) = [1 0.707 0 0 0];
MaxrE2D(2,:) = [1 0.866 0.500 0 0];
MaxrE2D(3,:) = [1 0.924 0.707 0.383 0];
MaxrE2D(4,:) = [1 0.951 0.809 0.588 0.309];
MaxrE3D(1,:) = [1 0.577 0 0 0];
MaxrE3D(2,:) = [1 0.775 0.400 0 0];
MaxrE3D(3,:) = [1 0.862 0.612 0.305 0];
MaxrE3D(4,:) = [1 0.906 0.732 0.501 0.246];
fprintf(fid,'MaxRvGain2d = end_of_csps;\nlength_of_array = %d;\n',order+1);
fprintf(fid,'end_of_gain = MaxRvGain2d + length_of_array;\n');
for a = 1:order+1
fprintf(fid,'MaxRvGain2d[%d] = 1.000;',a-1);
end
fprintf(fid,'\nMaxRvGain3d = end_of_gain;\nlength_of_array = %d;\n',order+1);
fprintf(fid,'end_of_gain = MaxRvGain3d + length_of_array;\n');
for a = 1:order+1
fprintf(fid,'MaxRvGain3d[%d] = 1.000;',a-1);
end
fprintf(fid,'\nInPhase2d = end_of_gain;\nlength_of_array = %d;\n',order+1);
fprintf(fid,'end_of_gain = InPhaseGain2d + length_of_array;\n');
for a = 1:order+1
fprintf(fid,'InPhaseGain2d[%d] = %1.4f;',a-1,InPhase2D(order,a));
end
fprintf(fid,'\nInPhaseGain3d = end_of_gain;\nlength_of_array = %d;\n',order+1);
fprintf(fid,'end_of_gain = InPhaseGain3d + length_of_array;\n');
for a = 1:order+1
fprintf(fid,'InPhaseGain3d[%d] = %1.4f;',a-1,InPhase3D(order,a));
end
fprintf(fid,'\nMaxReGain2d = end_of_gain;\nlength_of_array = %d;\n',order+1);
fprintf(fid,'end_of_gain = MaxReGain2d + length_of_array;\n');
for a = 1:order+1
fprintf(fid,'MaxReGain2d[%d] = %1.4f;',a-1,MaxrE2D(order,a));
end
fprintf(fid,'\nMaxReGain3d = end_of_gain;\nlength_of_array = %d;\n',order+1);
fprintf(fid,'end_of_gain = MaxReGain3d + length_of_array;\n');
for a = 1:order+1
fprintf(fid,'MaxReGain3d[%d] = %1.4f;',a-1,MaxrE3D(order,a));
end
fprintf(fid,'\n\nBF = end_of_gain;\n');
fprintf(fid,'length_of_array = %d\n',(order+1)^2);
fprintf(fid,'end_of_array = BF + length_of_array;\n');
fprintf(fid,'\n@slider\n');
fprintf(fid,'slider1==0 ? GainType = MaxRvGain%s;\n',HV);
fprintf(fid,'slider1==1 ? GainType = InPhaseGain%s;\n',HV);
fprintf(fid,'slider1==2 ? GainType = MaxReGain%s;\n\n',HV);
fprintf(fid,'@sample\n');
for an = 1:(order+1)^2
fprintf(fid,'BF[%d] = spl%d*GainType[%d];\n',an-1,an-1,floor(sqrt(an-1)));
end
% clear samples ready for deriving output
for an = 1:nspeak
fprintf(fid,'spl%d=',an-1);
end
fprintf(fid,'0.0;\n\n');
fprintf(fid,'cnt = 0;\n');
fprintf(fid,'loop(%d,\n',(order+1)^2);
for an = 1:nspeak
fprintf(fid,'spl%d+=BF[cnt]*csp%d[cnt];\n',an-1,an);
end
fprintf(fid,'cnt = cnt+1;\n);');
fclose(fid);
type(pname)