You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When setting the activation function and loss function for RnnOutputLayer, I'm using sigmoid and LossBinaryXENT since the class is binary. However, weka doesn;t seem to read the options properly. I tried it from command line and GUI.
Expected behavior
Activation function should be set to sigmoid and Loss function should be set to LossBinaryXENT
Error
Caused by: org.deeplearning4j.exception.DL4JInvalidConfigException: Invalid output layer configuration for layer "RnnOutput layer": softmax activation function in combination with LossBinaryXENT (binary cross entropy loss function). For multi-class classification, use softmax + MCXENT (multi-class cross entropy); for binary multi-label classification, use sigmoid + XENT.
OR:
Caused by: org.deeplearning4j.exception.DL4JInvalidConfigException: Invalid output layer configuration for layer "RnnOutput layer": sigmoid activation function in combination with LossMCXENT (binary cross entropy loss function). For multi-class classification, use softmax + MCXENT (multi-class cross entropy); for binary multi-label classification, use sigmoid + XENT.
Additional Information
Weka version: 3.8.5
wekaDeeplearning4j package version: 1.7.1
Operating System: Mac and Linux.
The text was updated successfully, but these errors were encountered:
Hi @fdebeyan, unfortunately I wasn't able to replicate this issue - can you try the configuration below by copying it into the GUI and let me know how it goes? If I'm not mistaken, this is the output layer configuration you're having an issue with.
When setting the activation function and loss function for RnnOutputLayer, I'm using sigmoid and LossBinaryXENT since the class is binary. However, weka doesn;t seem to read the options properly. I tried it from command line and GUI.
To Reproduce
[Low] RnnSequenceClassifier$2030411960|-S 1 -tBPTTBackward 25 -tBPTTForward 25 -cache-mode MEMORY -early-stopping "weka.dl4j.earlystopping.EarlyStopping -maxEpochsNoImprovement 0 -valPercentage 0.0" -normalization "Standardize training data" -iterator "weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator -stopWords "weka.dl4j.text.stopwords.Dl4jRainbow " -tokenPreProcessor "weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor " -tokenizerFactory "weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory -NMax 3 -NMin 1 -delimiters \" \\\\\\r\\\\\\n\\\\\\t.,;:\\\'\\\"()?!\"" -truncationLength 100 -wordVectorLocation /home/w2v-sample-2.arff -bs 1" -iteration-listener "weka.dl4j.listener.EpochListener -eval true -n 5" -layer "weka.dl4j.layers.LSTM -gateActivation "weka.dl4j.activations.ActivationSigmoid " -nOut 100 -activation "weka.dl4j.activations.ActivationReLU " -name "LSTM layer"" -layer "weka.dl4j.layers.RnnOutputLayer -lossFn "weka.dl4j.lossfunctions.LossBinaryXENT " -nOut 2 -activation "weka.dl4j.activations.ActivationSigmoid " -name "RnnOutput layer"" -logConfig "weka.core.LogConfiguration -append true -dl4jLogLevel WARN -logFile /wekafiles/wekaDeeplearning4j.log -nd4jLogLevel INFO -wekaDl4jLogLevel INFO" -config "weka.dl4j.NeuralNetConfiguration -biasInit 0.0 -biasUpdater "weka.dl4j.updater.Sgd -lr 0.001 -lrSchedule \"weka.dl4j.schedules.ConstantSchedule -scheduleType EPOCH\"" -dist "weka.dl4j.distribution.Disabled " -dropout "weka.dl4j.dropout.Disabled " -gradientNormalization None -gradNormThreshold 1.0 -l1 NaN -l2 NaN -minimize -algorithm STOCHASTIC_GRADIENT_DESCENT -updater "weka.dl4j.updater.Adam -beta1MeanDecay 0.9 -beta2VarDecay 0.999 -epsilon 1.0E-8 -lr 0.001 -lrSchedule \"weka.dl4j.schedules.ConstantSchedule -scheduleType EPOCH\"" -weightInit XAVIER -weightNoise "weka.dl4j.weightnoise.Disabled "" -numEpochs 10 -numGPUs 1 -averagingFrequency 10 -prefetchSize 24 -queueSize 0 -zooModel "weka.dl4j.zoo.CustomNet -channelsLast false -pretrained NONE"
Expected behavior
Activation function should be set to sigmoid and Loss function should be set to LossBinaryXENT
Error
Caused by: org.deeplearning4j.exception.DL4JInvalidConfigException: Invalid output layer configuration for layer "RnnOutput layer": softmax activation function in combination with LossBinaryXENT (binary cross entropy loss function). For multi-class classification, use softmax + MCXENT (multi-class cross entropy); for binary multi-label classification, use sigmoid + XENT.
OR:
Caused by: org.deeplearning4j.exception.DL4JInvalidConfigException: Invalid output layer configuration for layer "RnnOutput layer": sigmoid activation function in combination with LossMCXENT (binary cross entropy loss function). For multi-class classification, use softmax + MCXENT (multi-class cross entropy); for binary multi-label classification, use sigmoid + XENT.
Additional Information
The text was updated successfully, but these errors were encountered: