Skip to content

Commit 64482ab

Browse files
authored
Add codecov API token, small fixes to tutorials (#475)
1 parent 895a650 commit 64482ab

File tree

7 files changed

+351
-317
lines changed

7 files changed

+351
-317
lines changed

.github/workflows/docs_deploy.yml

+1
Original file line numberDiff line numberDiff line change
@@ -45,6 +45,7 @@ jobs:
4545
with:
4646
action: codecov/[email protected]
4747
with: |
48+
token: ${{ secrets.CODECOV_TOKEN }}
4849
file: ./coverage.xml
4950
name: codecov-umbrella
5051
fail_ci_if_error: true

.github/workflows/integration_tests.yml

+1
Original file line numberDiff line numberDiff line change
@@ -56,6 +56,7 @@ jobs:
5656
with:
5757
action: codecov/[email protected]
5858
with: |
59+
token: ${{ secrets.CODECOV_TOKEN }}
5960
file: ./coverage.xml
6061
name: codecov-umbrella
6162
fail_ci_if_error: true

docs/source/intro.rst

+6-5
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,14 @@
1-
.. figure:: https://github.com/VectorInstitute/cyclops/blob/main/docs/source/theme/static/cyclops_logo-dark.png?raw=true
1+
.. figure::
2+
https://github.com/VectorInstitute/cyclops/blob/main/docs/source/theme/static/cyclops_logo-dark.png?raw=true
23
:alt: cyclops Logo
34

45
--------------
56

67
|PyPI| |code checks| |integration tests| |docs| |codecov| |docker|
78
|license|
89

9-
``cyclops`` is a framework for facilitating research and deployment of
10-
ML models for healthcare. It provides a few high-level APIs namely:
10+
``cyclops`` is a toolkit for facilitating research and deployment of ML
11+
models for healthcare. It provides a few high-level APIs namely:
1112

1213
- ``query`` - Query EHR databases (such as MIMIC-IV)
1314
- ``data`` - Create datasets for training, inference and evaluation. We
@@ -24,8 +25,8 @@ ML models for healthcare. It provides a few high-level APIs namely:
2425

2526
- ``evaluate`` - Evaluate models on clinical prediction tasks
2627
- ``monitor`` - Detect dataset shift relevant for clinical use cases
27-
- ``report`` - Create `model
28-
cards <https://vectorinstitute.github.io/cyclops/api/tutorials/mimiciii/model_card.html>`__
28+
- ``report`` - Create `model report
29+
cards <https://vectorinstitute.github.io/cyclops/api/tutorials/kaggle/model_card.html>`__
2930
for clinical ML models
3031

3132
``cyclops`` also provides a library of end-to-end use cases on clinical

docs/source/tutorials/kaggle/heart_failure_prediction.ipynb

+5-5
Original file line numberDiff line numberDiff line change
@@ -143,7 +143,7 @@
143143
"cell_type": "markdown",
144144
"metadata": {},
145145
"source": [
146-
"#### Sex values"
146+
"### Sex values"
147147
]
148148
},
149149
{
@@ -187,7 +187,7 @@
187187
"cell_type": "markdown",
188188
"metadata": {},
189189
"source": [
190-
"#### Age distribution"
190+
"### Age distribution"
191191
]
192192
},
193193
{
@@ -233,7 +233,7 @@
233233
"cell_type": "markdown",
234234
"metadata": {},
235235
"source": [
236-
"#### Outcome distribution"
236+
"### Outcome distribution"
237237
]
238238
},
239239
{
@@ -346,7 +346,7 @@
346346
"cell_type": "markdown",
347347
"metadata": {},
348348
"source": [
349-
"#### Identifying feature types\n",
349+
"### Identifying feature types\n",
350350
"\n",
351351
"Cyclops `TabularFeatures` class helps to identify feature types, an essential step before preprocessing the data. Understanding feature types (numerical/categorical/binary) allows us to apply appropriate preprocessing steps for each type."
352352
]
@@ -372,7 +372,7 @@
372372
"cell_type": "markdown",
373373
"metadata": {},
374374
"source": [
375-
"#### Creating data preprocessors\n",
375+
"### Creating data preprocessors\n",
376376
"\n",
377377
"We create a data preprocessor using sklearn's ColumnTransformer. This helps in applying different preprocessing steps to different columns in the dataframe. For instance, binary features might be processed differently from numeric features."
378378
]

docs/source/tutorials/synthea/los_prediction.ipynb

+7-7
Original file line numberDiff line numberDiff line change
@@ -277,7 +277,7 @@
277277
"source": [
278278
"## Data Inspection and Preprocessing\n",
279279
"\n",
280-
"#### Drop NaNs based on the `NAN_THRESHOLD`"
280+
"### Drop NaNs based on the `NAN_THRESHOLD`"
281281
]
282282
},
283283
{
@@ -348,7 +348,7 @@
348348
"id": "dc5b45cb-2406-4330-b2fc-3b4823ff0c17",
349349
"metadata": {},
350350
"source": [
351-
"#### Length of stay distribution"
351+
"### Length of stay distribution"
352352
]
353353
},
354354
{
@@ -380,7 +380,7 @@
380380
"id": "05156094-56e8-49c5-8e3c-478a1797db62",
381381
"metadata": {},
382382
"source": [
383-
"#### Outcome distribution"
383+
"### Outcome distribution"
384384
]
385385
},
386386
{
@@ -466,7 +466,7 @@
466466
"id": "e48376c2-a437-41f4-96fa-ea75f182f7b7",
467467
"metadata": {},
468468
"source": [
469-
"#### Gender distribution"
469+
"### Gender distribution"
470470
]
471471
},
472472
{
@@ -518,7 +518,7 @@
518518
"tags": []
519519
},
520520
"source": [
521-
"#### Age distribution"
521+
"### Age distribution"
522522
]
523523
},
524524
{
@@ -570,7 +570,7 @@
570570
"id": "483c9bb5-57bf-4a2c-960f-35f7e76eff1d",
571571
"metadata": {},
572572
"source": [
573-
"#### Identifying feature types\n",
573+
"### Identifying feature types\n",
574574
"\n",
575575
"Cyclops `TabularFeatures` class helps to identify feature types, an essential step before preprocessing the data. Understanding feature types (numerical/categorical/binary) allows us to apply appropriate preprocessing steps for each type."
576576
]
@@ -636,7 +636,7 @@
636636
"id": "a2738074-00be-46fa-999f-77f85add9469",
637637
"metadata": {},
638638
"source": [
639-
"#### Creating data preprocessors\n",
639+
"### Creating data preprocessors\n",
640640
"\n",
641641
"We create a data preprocessor using sklearn's ColumnTransformer. This helps in applying different preprocessing steps to different columns in the dataframe. For instance, binary features might be processed differently from numeric features."
642642
]

docs/source/tutorials_use_cases.rst

+18-12
Original file line numberDiff line numberDiff line change
@@ -1,34 +1,40 @@
11
Example use cases
22
=================
33

4-
5-
Binary classification using tabular data
6-
----------------------------------------
7-
4+
Tabular data
5+
------------
86

97
Kaggle Heart Failure Prediction
108
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
119

1210
This is a binary classification problem where the goal is to predict
13-
risk of heart disease. The `dataset <https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction>`_
11+
risk of heart disease. The `heart failure dataset <https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction>`_
1412
is available on Kaggle. The dataset contains 11 features and 1 target
1513
variable.
1614

17-
1815
.. toctree::
1916

2017
tutorials/kaggle/heart_failure_prediction.ipynb
2118

2219

23-
Chest X-ray classification
24-
--------------------------
20+
Synthea Prolonged Length of Stay Prediction
21+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22+
23+
This is a binary classification problem where the goal is to predict
24+
whether a patient will have a prolonged length of stay in the hospital
25+
(more than 7 days). The `synthea dataset <https://github.com/synthetichealth/synthea>`_
26+
is generated using Synthea which is a synthetic patient generator. The dataset
27+
contains observations, medications and procedures as features.
28+
29+
.. toctree::
2530

26-
The `CXRClassificationTask` task is a multi-label classification task that predicts the
27-
presence of different thoracic diseases given a chest X-ray image.
31+
tutorials/synthea/los_prediction.ipynb
2832

33+
Image data
34+
----------
2935

30-
NIH Chest X-ray dataset
31-
^^^^^^^^^^^^^^^^^^^^^^^
36+
NIH Chest X-ray classification
37+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3238

3339
This tutorial showcases the use of the ``tasks`` API to implement a chest X-ray
3440
classification task. The dataset used is the `NIH Chest X-ray dataset <https://nihcc.app.box.com/v/ChestXray-NIHCC>`__, which contains 112,120 frontal-view X-ray images of 30,805 unique patients with 14 disease labels.

0 commit comments

Comments
 (0)