|
| 1 | +# 🐋 Qwen 3 Local RAG Reasoning Agent |
| 2 | + |
| 3 | +This RAG Application demonstrates how to build a powerful Retrieval-Augmented Generation (RAG) system using locally running Qwen 3 and Gemma 3 models via Ollama. It combines document processing, vector search, and web search capabilities to provide accurate, context-aware responses to user queries. |
| 4 | + |
| 5 | +## Features |
| 6 | + |
| 7 | +- **🧠 Multiple Local LLM Options**: |
| 8 | + |
| 9 | + - Qwen3 (1.7b, 8b) - Alibaba's latest language models |
| 10 | + - Gemma3 (1b, 4b) - Google's efficient language models with multimodal capabilities |
| 11 | + - DeepSeek (1.5b) - Alternative model option |
| 12 | +- **📚 Comprehensive RAG System**: |
| 13 | + |
| 14 | + - Upload and process PDF documents |
| 15 | + - Extract content from web URLs |
| 16 | + - Intelligent chunking and embedding |
| 17 | + - Similarity search with adjustable threshold |
| 18 | +- **🌐 Web Search Integration**: |
| 19 | + |
| 20 | + - Fallback to web search when document knowledge is insufficient |
| 21 | + - Configurable domain filtering |
| 22 | + - Source attribution in responses |
| 23 | +- **🔄 Flexible Operation Modes**: |
| 24 | + |
| 25 | + - Toggle between RAG and direct LLM interaction |
| 26 | + - Force web search when needed |
| 27 | + - Adjust similarity thresholds for document retrieval |
| 28 | +- **💾 Vector Database Integration**: |
| 29 | + |
| 30 | + - Qdrant vector database for efficient similarity search |
| 31 | + - Persistent storage of document embeddings |
| 32 | + |
| 33 | +## How to Get Started |
| 34 | + |
| 35 | +### Prerequisites |
| 36 | + |
| 37 | +- [Ollama](https://ollama.ai/) installed locally |
| 38 | +- Python 3.8+ |
| 39 | +- Qdrant account (free tier available) for vector storage |
| 40 | +- Exa API key (optional, for web search capability) |
| 41 | + |
| 42 | +### Installation |
| 43 | + |
| 44 | +1. Clone the GitHub repository |
| 45 | + |
| 46 | +```bash |
| 47 | +git clone https://github.com/Shubhamsaboo/awesome-llm-apps.git |
| 48 | +cd rag_tutorials/qwen_local_rag |
| 49 | +``` |
| 50 | + |
| 51 | +2. Install the required dependencies: |
| 52 | + |
| 53 | +```bash |
| 54 | +pip install -r requirements.txt |
| 55 | +``` |
| 56 | + |
| 57 | +3. Pull the required models using Ollama: |
| 58 | + |
| 59 | +```bash |
| 60 | +ollama pull qwen3:1.7b # Or any other model you want to use |
| 61 | +ollama run snowflake-arctic-embed # Or any other model you want to use |
| 62 | +``` |
| 63 | + |
| 64 | +4. Get your API keys: |
| 65 | + |
| 66 | + - Qdrant API key and URL (for vector database) |
| 67 | + - Exa API key (optional, for web search) |
| 68 | +5. Run the application: |
| 69 | + |
| 70 | +```bash |
| 71 | +streamlit run qwen_local_rag_agent.py |
| 72 | +``` |
| 73 | + |
| 74 | +## How It Works |
| 75 | + |
| 76 | +1. **Document Processing**: |
| 77 | + |
| 78 | + - PDF files are processed using PyPDFLoader |
| 79 | + - Web content is extracted using WebBaseLoader |
| 80 | + - Documents are split into chunks with RecursiveCharacterTextSplitter |
| 81 | +2. **Vector Database**: |
| 82 | + |
| 83 | + - Document chunks are embedded using Ollama's embedding models |
| 84 | + - Embeddings are stored in Qdrant vector database |
| 85 | + - Similarity search retrieves relevant documents based on query |
| 86 | +3. **Query Processing**: |
| 87 | + |
| 88 | + - User queries are analyzed to determine the best information source |
| 89 | + - System checks document relevance using similarity threshold |
| 90 | + - Falls back to web search if no relevant documents are found |
| 91 | +4. **Response Generation**: |
| 92 | + |
| 93 | + - Local LLM (Qwen/Gemma) generates responses based on retrieved context |
| 94 | + - Sources are cited and displayed to the user |
| 95 | + - Web search results are clearly indicated when used |
| 96 | + |
| 97 | +## Configuration Options |
| 98 | + |
| 99 | +- **Model Selection**: Choose between different Qwen, Gemma, and DeepSeek models |
| 100 | +- **RAG Mode**: Toggle between RAG-enabled and direct LLM interaction |
| 101 | +- **Search Tuning**: Adjust similarity threshold for document retrieval |
| 102 | +- **Web Search**: Enable/disable web search fallback and configure domain filtering |
| 103 | + |
| 104 | +## Use Cases |
| 105 | + |
| 106 | +- **Document Q&A**: Ask questions about your uploaded documents |
| 107 | +- **Research Assistant**: Combine document knowledge with web search |
| 108 | +- **Local Privacy**: Process sensitive documents without sending data to external APIs |
| 109 | +- **Offline Operation**: Run advanced AI capabilities with limited or no internet access |
| 110 | + |
| 111 | +## Requirements |
| 112 | + |
| 113 | +See `requirements.txt` for the complete list of dependencies. |
0 commit comments