Skip to content

Confusion about the 'warmup-decay' of the noise schedule #86

Open
@Sometimesrains

Description

@Sometimesrains

Hi, your work is outstanding, but I have a question.
In the file gaussian_diffusion.py, line 36 as follow:
elif schedule_name == 'warmup-decay':
warmup_steps = max(1, int(warmup_steps_ratio * num_diffusion_timesteps))
sqrt_steps = get_named_beta_schedule('sqrt', num_diffusion_timesteps)
beta_mid = sqrt_steps[-warmup_steps]
warmup = np.linspace(beta_mid, 0.0001, warmup_steps)
return np.concatenate([sqrt_steps[:-warmup_steps], warmup])
Why should the beta values of the last steps be reduced to 0.0001 and what is the benefit?
shouldn't the warm-up start from the very beginning, namely increasing to 0.0001, like this
elif schedule_name == 'warmup-decay':
warmup_steps = max(1, int(warmup_steps_ratio * num_diffusion_timesteps))
warmup = np.linspace(0.0001, sqrt_steps[warmup_steps], warmup_steps)
return np.concatenate([warmup, sqrt_steps[warmup_steps:]])

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions