|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Demystifying GAN Loss Function" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "Now that we have understood how GANs work in detail, we will examine the loss function of GAN. Before going ahead let us recap the notations. \n", |
| 15 | + "\n", |
| 16 | + "* A noise which is fed as an input to the generator is represented by $z$ \n", |
| 17 | + "\n", |
| 18 | + "* Uniform or normal distribution from which the noise $z$ is sampled is represented by $p_z$\n", |
| 19 | + "\n", |
| 20 | + "* An input image is represented by $x$\n", |
| 21 | + "\n", |
| 22 | + "* Real data distribution i.e distribution of our training set is represented by $p_r$\n", |
| 23 | + "\n", |
| 24 | + "* Fake data distribution i.e distribution of the generator is represented by $p_g$\n", |
| 25 | + "\n", |
| 26 | + "When we write, $x \\sim p_{r}(x)$ , it implies that image $x$ is sampled from the real distribution $p_r$\n", |
| 27 | + ". Similarly, $x \\sim p_{g}(x)$ denotes that image $x$ is sampled from the generator\n", |
| 28 | + "distribution $p_g$ and $z \\sim p_{z}(z)$ implies that the generator input $z$ is sampled from the\n", |
| 29 | + "uniform distribution $p_z$." |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "As we learned that both the generator and discriminator are neural networks and both of\n", |
| 37 | + "them update their parameters through backpropagation. We need to find the\n", |
| 38 | + "optimal generator parameter $\\theta_g $ and discriminator parameter $\\theta_d$." |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "markdown", |
| 43 | + "metadata": {}, |
| 44 | + "source": [ |
| 45 | + "## Discriminator Loss " |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "markdown", |
| 50 | + "metadata": {}, |
| 51 | + "source": [ |
| 52 | + "Now we will see the loss function of the discriminator. We know that the goal of the\n", |
| 53 | + "discriminator is to classify whether the image is real or fake image. Let us denote\n", |
| 54 | + "discriminator by $D$.\n", |
| 55 | + "\n", |
| 56 | + "The loss function of the discriminator is given as, \n", |
| 57 | + "\n", |
| 58 | + "$$\\max _{d} L(D, G)=\\mathbb{E}_{x \\sim p_{r}(x)}\\left[\\log D\\left(x ; \\theta_{d}\\right)\\right]+\\mathbb{E}_{z \\sim p_{z}(z)}\\left[\\log \\left(1-D\\left(G\\left(z ; \\theta_{g}\\right) ; \\theta_{d}\\right)\\right)\\right]$$" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "markdown", |
| 63 | + "metadata": {}, |
| 64 | + "source": [ |
| 65 | + "What does this mean though? Let us see each term by term. \n", |
| 66 | + "\n", |
| 67 | + "### First term\n", |
| 68 | + "\n", |
| 69 | + "Let us look at the first term,\n", |
| 70 | + "\n", |
| 71 | + "$$ \\mathbb{E}_{x \\sim p_{r}} \\log (D(x))$$" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "markdown", |
| 76 | + "metadata": {}, |
| 77 | + "source": [ |
| 78 | + "* $x \\sim p_{r}(x)$ implies we are sampling input $x$ from the real data distribution $p_r$, so $x$ is a\n", |
| 79 | + "real image. \n", |
| 80 | + "\n", |
| 81 | + "* $D(x)$ implies that we are feeding the input image $x$ to the discriminator $D$ and it will\n", |
| 82 | + "return the probability of input image $x$ to be a real image. \n", |
| 83 | + "\n", |
| 84 | + "Since we know that $x$ is a real image i.e from a real data distribution, we need to maximize the probability of $D(x)$:\n", |
| 85 | + "\n", |
| 86 | + "$$\\max D(x)$$\n", |
| 87 | + "\n", |
| 88 | + "But instead of maximizing raw probabilities we maximize log probabilities as we learned in\n", |
| 89 | + "chapter 7, we can write, \n", |
| 90 | + "\n", |
| 91 | + "$$ \\max \\log D(x)$$\n", |
| 92 | + "\n", |
| 93 | + "So our final equation becomes:\n", |
| 94 | + "\n", |
| 95 | + "$$\\max \\mathbb{E}_{x \\sim p_{r}(x)}[\\log D(x)]$$\n", |
| 96 | + "\n", |
| 97 | + "__$\\mathbb{E}_{x \\sim p_{r}(x)}[\\log D(x)]$ implies the expectations of the log likelihood of\n", |
| 98 | + "input images sampled from the real data distribution being real.__" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "markdown", |
| 103 | + "metadata": {}, |
| 104 | + "source": [ |
| 105 | + "### Second term" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "markdown", |
| 110 | + "metadata": {}, |
| 111 | + "source": [ |
| 112 | + "Now, let us look at the second term\n", |
| 113 | + "\n", |
| 114 | + "$$\\mathbb{E}_{z \\sim p_{(z)}}[\\log (1-D(G(z)))] $$\n", |
| 115 | + "\n", |
| 116 | + "\n", |
| 117 | + "* $z \\sim p_{z}(z)$ implies we are sampling a random noise $z$ from the uniform distribution $p_z$.\n", |
| 118 | + "\n", |
| 119 | + "* $G(z)$ implies that the generator $G$ takes the random noise $z$ as an input and returns an\n", |
| 120 | + "image based on its implicitly learned distribution $p_g$.\n", |
| 121 | + "\n", |
| 122 | + "* $D(G(z))$ implies we are feeding the image generated by the generator to the\n", |
| 123 | + "discriminator $D$ and it will return the probability that input image to be a real image. \n", |
| 124 | + "\n", |
| 125 | + "\n", |
| 126 | + "If we subtract 1 from $D(G(z))$ then it will return the probability of the input image being\n", |
| 127 | + "a fake image.\n", |
| 128 | + "\n", |
| 129 | + "$$1-D(G(z))$$\n", |
| 130 | + "\n", |
| 131 | + "Since we know $z$ is not a real image, the discriminator will maximize this probability,\n", |
| 132 | + "ie discriminator maximizes the probability $z$ of being classified as a fake image. So we write\n", |
| 133 | + "\n", |
| 134 | + "$\\max 1-D(G(z))$\n", |
| 135 | + "\n", |
| 136 | + "Instead of maximizing raw probabilities, we maximize the log probability, so we write,\n", |
| 137 | + "\n", |
| 138 | + "$$ \\max \\log (1-D(G(z)))$$\n", |
| 139 | + "\n", |
| 140 | + "__$\\mathbb{E}_{z \\sim p_{z}(z)}[\\log (1-D(G(z)))]_{\\mathrm{i}}$ implies the expectations i.e expectations of the log\n", |
| 141 | + "likelihood of input images generated by the generator being fake.__" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "markdown", |
| 146 | + "metadata": {}, |
| 147 | + "source": [ |
| 148 | + "### Final term" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "markdown", |
| 153 | + "metadata": {}, |
| 154 | + "source": [ |
| 155 | + "So, combining these two terms, loss function of the discriminator is given as,\n", |
| 156 | + "\n", |
| 157 | + "$$ \\max _{d} L(D, G)=\\mathbb{E}_{x \\sim p_{r}(x)}\\left[\\log D\\left(x ; \\theta_{d}\\right)\\right]+\\mathbb{E}_{z \\sim p_{z}(z)}\\left[\\log \\left(1-D\\left(G\\left(z ; \\theta_{g}\\right) ; \\theta_{d}\\right)\\right)\\right]$$\n", |
| 158 | + "\n", |
| 159 | + "Where $\\theta_d$ and $\\theta_g$ are the parameters of the discriminator and generator network\n", |
| 160 | + "respectively" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "markdown", |
| 165 | + "metadata": {}, |
| 166 | + "source": [ |
| 167 | + "## Generator loss\n", |
| 168 | + "\n", |
| 169 | + "The loss function of the generator can be given as," |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "markdown", |
| 174 | + "metadata": {}, |
| 175 | + "source": [ |
| 176 | + "$$ \\min _{g} L(D, G)=\\mathbb{E}_{z \\sim p_{z}(z)}\\left[\\log \\left(1-D\\left(G\\left(z ; \\theta_{g}\\right) ; \\theta_{d}\\right)\\right)\\right]$$\n", |
| 177 | + "\n", |
| 178 | + "We know that the goal of the generator is to fool the discriminator to classify the fake image\n", |
| 179 | + "as a real image. \n", |
| 180 | + "\n", |
| 181 | + "In the previous section, we saw, $\\mathbb{E}_{z \\sim p_{z}(z)}[\\log (1-D(G(z)))]_{\\mathrm{}}$ implies the probability of classifying the input image as a\n", |
| 182 | + "fake image and the discriminator maximizes this probabilities for correctly classifying the\n", |
| 183 | + "fake image as fake. \n", |
| 184 | + "\n", |
| 185 | + "\n", |
| 186 | + "But the generator wants to minimize this probability. As the generator wants to fool the\n", |
| 187 | + "discriminator, it minimizes this probability of input image being classified as fake. The loss\n", |
| 188 | + "function of the generator can be given as,\n", |
| 189 | + "\n", |
| 190 | + "$$\\min _{g} L(D, G)=\\mathbb{E}_{z \\sim p_{z}(z)}\\left[\\log \\left(1-D\\left(G\\left(z ; \\theta_{g}\\right) ; \\theta_{d}\\right)\\right)\\right]$$" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "markdown", |
| 195 | + "metadata": {}, |
| 196 | + "source": [ |
| 197 | + "## Total Loss\n", |
| 198 | + "\n", |
| 199 | + "\n", |
| 200 | + "We just learned the loss function of generator and discriminator, combining these two\n", |
| 201 | + "losses, we write our final loss function can be written as," |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "markdown", |
| 206 | + "metadata": {}, |
| 207 | + "source": [ |
| 208 | + "$$ \\min _{G} \\max _{D} L(D, G)=\\mathbb{E}_{x \\sim p_{r}(x)}[\\log D(x)]+\\mathbb{E}_{z \\sim p_{z}(z)}[\\log (1-D(G(z)))]$$\n", |
| 209 | + "\n", |
| 210 | + "\n", |
| 211 | + "So our objective function is basically a min-max objective function i.e maximization for the\n", |
| 212 | + "discriminator and minimization for the generator and we find the optimal generator\n", |
| 213 | + "parameter $\\theta_g$ and discriminator parameter $\\theta_d$ through backpropagating the respective\n", |
| 214 | + "networks.\n", |
| 215 | + "\n" |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "markdown", |
| 220 | + "metadata": {}, |
| 221 | + "source": [ |
| 222 | + "So we perform gradient ascent i.e maximization on the discriminator and update the discriminator parameter $\\theta_d$:\n", |
| 223 | + " \n", |
| 224 | + " $$ \\nabla_{\\theta_{d}} \\frac{1}{m} \\sum_{i=1}^{m}\\left[\\log D\\left(\\boldsymbol{x}^{(i)}\\right)+\\log \\left(1-D\\left(G\\left(\\boldsymbol{z}^{(i)}\\right)\\right)\\right)\\right]$$\n", |
| 225 | + " \n", |
| 226 | + " \n", |
| 227 | + "And gradient descent i.e minimization on the generator and update the generator parameter $\\theta_g$:\n", |
| 228 | + "\n", |
| 229 | + "$$\\nabla_{\\theta_{g}} \\frac{1}{m} \\sum_{i=1}^{m} \\log \\left(1-D\\left(G\\left(\\boldsymbol{z}^{(i)}\\right)\\right)\\right)$$" |
| 230 | + ] |
| 231 | + }, |
| 232 | + { |
| 233 | + "cell_type": "markdown", |
| 234 | + "metadata": {}, |
| 235 | + "source": [ |
| 236 | + "However, optimizing the above generator objective does not work properly and causes a\n", |
| 237 | + "stability issue. So we introduce a new form of loss called heuristic loss. " |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "markdown", |
| 242 | + "metadata": {}, |
| 243 | + "source": [ |
| 244 | + "## Heuristic Loss\n", |
| 245 | + "\n", |
| 246 | + "There is no change in the loss function of the discriminator it is written as,\n", |
| 247 | + "\n", |
| 248 | + "$$ \\max _{d} L(D, G)=\\mathbb{E}_{x \\sim p_{r}(x)}\\left[\\log D\\left(x ; \\theta_{d}\\right)\\right]+\\mathbb{E}_{z \\sim p_{z}(z)}\\left[\\log \\left(1-D\\left(G\\left(z ; \\theta_{g}\\right) ; \\theta_{d}\\right)\\right)\\right]$$" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "markdown", |
| 253 | + "metadata": {}, |
| 254 | + "source": [ |
| 255 | + "Now, let us look at the generator loss, \n", |
| 256 | + "\n", |
| 257 | + "$$ \\min _{g} L(D, G)=\\mathbb{E}_{z \\sim p_{z}(z)}\\left[\\log \\left(1-D\\left(G\\left(z ; \\theta_{g}\\right) ; \\theta_{d}\\right)\\right)\\right] $$" |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "markdown", |
| 262 | + "metadata": {}, |
| 263 | + "source": [ |
| 264 | + "Can we change it to a maximizing equation just like our discriminators? How can we do\n", |
| 265 | + "that? We know that $ 1-D(G(Z)$ returns the probability of input image being fake and\n", |
| 266 | + "generator is minimizing this probability. \n", |
| 267 | + "\n", |
| 268 | + "\n", |
| 269 | + "Instead of doing this, we can write $D(G(z))$ it implies the probability of input image\n", |
| 270 | + "being real and now our generator can maximize this probability. It implies a generator is\n", |
| 271 | + "maxing the probability of the input fake image being classified as a real image. So the loss\n", |
| 272 | + "function of our generator now becomes,\n", |
| 273 | + "\n", |
| 274 | + "$$\\max _{g} L(D, G)=\\mathbb{E}_{z \\sim p_{z}(z)}\\left[\\log \\left(D\\left(G\\left(z ; \\theta_{g}\\right) ; \\theta_{d}\\right)\\right)\\right]$$\n", |
| 275 | + "\n", |
| 276 | + "So, now we have both the loss function of our discriminator and generator as maximizing\n", |
| 277 | + "terms i.e,\n", |
| 278 | + "\n", |
| 279 | + "$$\\max _{d} L(D, G)=\\mathbb{E}_{x \\sim p_{r}(x)}\\left[\\log D\\left(x ; \\theta_{d}\\right)\\right]+\\mathbb{E}_{z \\sim p_{z}(z)}\\left[\\log \\left(1-D\\left(G\\left(z ; \\theta_{g}\\right) ; \\theta_{d}\\right)\\right)\\right]$$\n", |
| 280 | + "\n", |
| 281 | + "$$\\max _{g} L(D, G)=\\mathbb{E}_{z \\sim p_{z}(z)}\\left[\\log \\left(D\\left(G\\left(z ; \\theta_{g}\\right) ; \\theta_{d}\\right)\\right)\\right]$$\n", |
| 282 | + "\n", |
| 283 | + "\n", |
| 284 | + "\n", |
| 285 | + "But instead of maximizing, if we can minimize the loss then we can apply our favorite\n", |
| 286 | + "gradient descent algorithms. Now how can we convert our maximizing problem into a\n", |
| 287 | + "minimization problem? It;'s so simple, just add a negative sign.\n", |
| 288 | + "So, our final loss function for the discriminator is given as,\n", |
| 289 | + "\n", |
| 290 | + "\n", |
| 291 | + "$$ \\boxed{L^{D}=-\\mathbb{E}_{x \\sim p_{r}(x)}[\\log D(x)]-\\mathbb{E}_{z \\sim p_{z}(z)}[\\log (1-D(G(z))]}$$\n" |
| 292 | + ] |
| 293 | + }, |
| 294 | + { |
| 295 | + "cell_type": "markdown", |
| 296 | + "metadata": {}, |
| 297 | + "source": [ |
| 298 | + "\n", |
| 299 | + "and the generator loss is,\n", |
| 300 | + "\n", |
| 301 | + "$$ \\boxed{L^{G}=-\\mathbb{E}_{z \\sim p_{z}(z)}[\\log (D(G(z)))]}$$" |
| 302 | + ] |
| 303 | + }, |
| 304 | + { |
| 305 | + "cell_type": "markdown", |
| 306 | + "metadata": {}, |
| 307 | + "source": [ |
| 308 | + "In the next section, we will learn how to use GAN to generate images of handwritten digits. " |
| 309 | + ] |
| 310 | + } |
| 311 | + ], |
| 312 | + "metadata": { |
| 313 | + "kernelspec": { |
| 314 | + "display_name": "Python 2", |
| 315 | + "language": "python", |
| 316 | + "name": "python2" |
| 317 | + }, |
| 318 | + "language_info": { |
| 319 | + "codemirror_mode": { |
| 320 | + "name": "ipython", |
| 321 | + "version": 2 |
| 322 | + }, |
| 323 | + "file_extension": ".py", |
| 324 | + "mimetype": "text/x-python", |
| 325 | + "name": "python", |
| 326 | + "nbconvert_exporter": "python", |
| 327 | + "pygments_lexer": "ipython2", |
| 328 | + "version": "2.7.12" |
| 329 | + } |
| 330 | + }, |
| 331 | + "nbformat": 4, |
| 332 | + "nbformat_minor": 2 |
| 333 | +} |
0 commit comments