-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
183 lines (150 loc) · 7.91 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import argparse
import logging
import sys
sys.path.append("..")
import torch
import numpy as np
import random
# from torchvision import transforms
from torch.utils.data import DataLoader
from models.re_model import REModel
from transformers import CLIPModel
from transformers.models.clip import CLIPProcessor
# from torch.utils.tensorboard import SummaryWriter
# from tensorboardX import SummaryWriter
from transformers import BertConfig, CLIPConfig, BertModel, AutoModel, AutoConfig
from processor.dataset import MMREProcessor, MMREDataset
from modules.train import BertTrainer
import pickle
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
logger = logging.getLogger(__name__)
MODEL_CLASS = {
'bert': (MMREProcessor, MMREDataset),
}
DATA_PATH = {
'MRE': {'train': 'data/txt/ours_train.txt',
'dev': 'data/txt/ours_val.txt',
'test': 'data/txt/ours_test.txt',
'train_auximgs': 'data/txt/mre_train_dict.pth', # {data_id : object_crop_img_path}
'dev_auximgs': 'data/txt/mre_dev_dict.pth',
'test_auximgs': 'data/txt/mre_test_dict.pth',
'train_img2crop': 'data/img_detect/train/train_img2crop.pth',
'dev_img2crop': 'data/img_detect/val/val_img2crop.pth',
'test_img2crop': 'data/img_detect/test/test_img2crop.pth'
}
}
IMG_PATH = {
'MRE': {'train': 'data/img_org/train/',
'dev': 'data/img_org/val/',
'test': 'data/img_org/test'}}
AUX_PATH = {
'MRE': {
'train': 'data/img_vg/train/crops',
'dev': 'data/img_vg/val/crops',
'test': 'data/img_vg/test/crops'
}
}
re_path = 'data/ours_rel2id.json'
def set_seed(seed=2021):
"""set random seed"""
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='bert', type=str, help="The name of bert.")
parser.add_argument('--vit_name', default='vit', type=str, help="The name of vit.")
parser.add_argument('--dataset_name', default='twitter15', type=str, help="The name of dataset.")
parser.add_argument('--bert_name', default='bert-base', type=str,
help="Pretrained language model name, bart-base or bart-large")
parser.add_argument('--num_epochs', default=30, type=int, help="Training epochs")
parser.add_argument('--device', default='cuda', type=str, help="cuda or cpu")
parser.add_argument('--batch_size', default=16, type=int, help="batch size")
parser.add_argument('--lr', default=2e-5, type=float, help="learning rate")
parser.add_argument('--warmup_ratio', default=0.01, type=float)
parser.add_argument('--eval_begin_epoch', default=16, type=int)
parser.add_argument('--seed', default=1, type=int, help="random seed, default is 1")
parser.add_argument('--load_path', default=None, type=str, help="Load model from load_path")
parser.add_argument('--save_path', default=None, type=str, help="save model at save_path")
parser.add_argument('--notes', default="", type=str, help="input some remarks for making save path dir.")
parser.add_argument('--do_train', action='store_true')
parser.add_argument('--do_test', action='store_true')
parser.add_argument('--max_seq', default=128, type=int)
parser.add_argument('--aux_size', default=128, type=int, help="aux size")
parser.add_argument('--rcnn_size', default=64, type=int, help="rcnn size")
parser.add_argument('--aux_num', default=3, type=int)
parser.add_argument('--rcnn_num', default=3, type=int)
args = parser.parse_args()
print(args)
logger.info(args)
data_path, img_path, ent_path = DATA_PATH[args.dataset_name], IMG_PATH[args.dataset_name], AUX_PATH[args.dataset_name]
data_process, dataset_class = MODEL_CLASS[args.model_name]
set_seed(args.seed) # set seed, default is 1
if args.save_path is not None: # make save_path dir
args.save_path = os.path.join(args.save_path,)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path, exist_ok=True)
# logdir = "logs/" + args.model_name + "_" + args.dataset_name + "_" + str(args.batch_size) + "_" + str(
# args.lr) + args.notes
# writer = None
writer = None
if args.do_train:
clip_processor = CLIPProcessor.from_pretrained(args.vit_name)
processor = data_process(data_path, re_path, args.bert_name, clip_processor=clip_processor, )
train_dataset = dataset_class(processor, args, img_path, ent_path, args.max_seq, args.aux_size, args.rcnn_size, mode='train')
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True)
valid_dataset = dataset_class(processor, args, img_path, ent_path, args.max_seq, args.aux_size, args.rcnn_size, mode='dev')
valid_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
test_dataset = dataset_class(processor, args, img_path, ent_path, args.max_seq, args.aux_size, args.rcnn_size, mode='test')
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
re_dict = processor.get_relation_dict()
num_labels = len(re_dict)
tokenizer = processor.tokenizer
# train
clip_model = CLIPModel.from_pretrained(args.vit_name)
clip_vit = clip_model.vision_model
bert_model = AutoModel.from_pretrained(args.bert_name)
config = CLIPConfig.from_pretrained(args.vit_name)
vision_config = config.vision_config
text_config = AutoConfig.from_pretrained(args.bert_name)
clip_model_dict = clip_vit.state_dict()
text_model_dict = bert_model.state_dict()
model = REModel(num_labels, tokenizer, args, vision_config, text_config, clip_model_dict, text_model_dict)
model = torch.nn.DataParallel(model)
model = model.to(args.device)
trainer = BertTrainer(train_data=train_dataloader, dev_data=valid_dataloader, test_data=test_dataloader,
re_dict=re_dict, model=model, args=args, logger=logger, writer=writer)
trainer.train()
torch.cuda.empty_cache()
if args.do_test:
clip_processor = CLIPProcessor.from_pretrained(args.vit_name)
processor = data_process(data_path, re_path, args.bert_name, clip_processor=clip_processor, )
test_dataset = dataset_class(processor, args, img_path, ent_path, args.max_seq, args.aux_size, args.rcnn_size, mode='test')
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
re_dict = processor.get_relation_dict()
num_labels = len(re_dict)
tokenizer = processor.tokenizer
clip_model = CLIPModel.from_pretrained(args.vit_name)
clip_vit = clip_model.vision_model
bert_model = AutoModel.from_pretrained(args.bert_name)
config = CLIPConfig.from_pretrained(args.vit_name)
vision_config = config.vision_config
text_config = AutoConfig.from_pretrained(args.bert_name)
clip_model_dict = clip_vit.state_dict()
text_model_dict = bert_model.state_dict()
model = REModel(num_labels, tokenizer, args, vision_config, text_config, clip_model_dict, text_model_dict)
model = torch.nn.DataParallel(model)
model = model.to(args.device)
trainer = BertTrainer(train_data=None, dev_data=None, test_data=test_dataloader,
re_dict=re_dict, model=model, args=args, logger=logger, writer=writer)
trainer.test(-1)
if __name__ == "__main__":
main()