Skip to content

Commit 3627d7e

Browse files
authored
Search-and-replace \mathcal{V} with \nu to fix PDF render issue (#2403)
1 parent 6014140 commit 3627d7e

File tree

3 files changed

+10
-10
lines changed

3 files changed

+10
-10
lines changed

extensions/2.0/Khronos/KHR_materials_sheen/README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -91,10 +91,10 @@ Not all incoming light is reflected at a micro-fiber. Some of the light may hit
9191

9292
All implementations should use the same calculations for the BRDF inputs. See [Appendix B](https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#appendix-b-brdf-implementation) for more details on the BRDF calculations.
9393

94-
The sheen formula follows the common microfacet form with visibility term $\mathcal{V}_s$:
94+
The sheen formula follows the common microfacet form with visibility term $\nu_s$:
9595

9696
$$
97-
\text{SheenBRDF} = \frac{G_S D_S}{4 \, \left|N \cdot L \right| \, \left| N \cdot V \right|} = \mathcal{V}_S D_S
97+
\text{SheenBRDF} = \frac{G_S D_S}{4 \, \left|N \cdot L \right| \, \left| N \cdot V \right|} = \nu_S D_S
9898
$$
9999

100100

@@ -112,7 +112,7 @@ sheen_distribution = (2 + inv_r) * pow(sin2h, inv_r * 0.5) / (2 * PI);
112112

113113
### Sheen visibility
114114

115-
The "Charlie" sheen visibility $\mathcal{V}_s = \frac{G_s}{4 \, \left|N \cdot L \right| \, \left| N \cdot V \right|}$ is also defined in the same document:
115+
The "Charlie" sheen visibility $\nu_s = \frac{G_s}{4 \, \left|N \cdot L \right| \, \left| N \cdot V \right|}$ is also defined in the same document:
116116

117117
```glsl
118118
float l(float x, float alpha_g)

extensions/2.0/Khronos/KHR_materials_transmission/README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -207,19 +207,19 @@ With the step function $\chi^+$ we ensure that the microsurface is only visible
207207
Introducing the visibility function
208208

209209
$$
210-
\mathcal{V}_T = \frac{G_T}{4 \left| N \cdot L \right| \left| N \cdot V \right|}
210+
\nu_T = \frac{G_T}{4 \left| N \cdot L \right| \left| N \cdot V \right|}
211211
$$
212212

213213
simplifies the original microfacet BTDF to
214214

215215
$$
216-
\text{MicrofacetBTDF} = \mathcal{V}_T D_T
216+
\text{MicrofacetBTDF} = \nu_T D_T
217217
$$
218218

219219
with
220220

221221
$$
222-
\mathcal{V}_T = \frac{\chi^+\left(\frac{H_T \cdot L}{N \cdot L}\right)}{\left| N \cdot L\right| + \sqrt{\alpha^2 + (1 - \alpha^2) (N \cdot L)^2}} \frac{\chi^+\left(\frac{H_T \cdot V}{N \cdot V}\right)}{\left| N \cdot V \right| + \sqrt{\alpha^2 + (1 - \alpha^2) (N \cdot V)^2}}
222+
\nu_T = \frac{\chi^+\left(\frac{H_T \cdot L}{N \cdot L}\right)}{\left| N \cdot L\right| + \sqrt{\alpha^2 + (1 - \alpha^2) (N \cdot L)^2}} \frac{\chi^+\left(\frac{H_T \cdot V}{N \cdot V}\right)}{\left| N \cdot V \right| + \sqrt{\alpha^2 + (1 - \alpha^2) (N \cdot V)^2}}
223223
$$
224224

225225
Thus we have the function

specification/2.0/Specification.adoc

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -3058,25 +3058,25 @@ G = \frac{2 \, \left| N \cdot L \right| \, \chi^{+}(H \cdot L)}{\left| N \cdot L
30583058

30593059
where χ^+^(*x*) denotes the Heaviside function: 1 if *x* > 0 and 0 if *x* <= 0. See <<Heitz2014,Heitz (2014)>> for a derivation of the formulas.
30603060

3061-
Introducing the visibility function latexmath:[\mathcal{V}]
3061+
Introducing the visibility function latexmath:[\nu]
30623062

30633063
[latexmath]
30643064
++++
3065-
\mathcal{V} = \frac{G}{4 \, \left| N \cdot L \right| \, \left| N \cdot V \right|}
3065+
\nu = \frac{G}{4 \, \left| N \cdot L \right| \, \left| N \cdot V \right|}
30663066
++++
30673067

30683068
simplifies the original microfacet BRDF to
30693069

30703070
[latexmath]
30713071
++++
3072-
\text{MicrofacetBRDF} = \mathcal{V} D
3072+
\text{MicrofacetBRDF} = \nu D
30733073
++++
30743074

30753075
with
30763076

30773077
[latexmath]
30783078
++++
3079-
\mathcal{V} = \frac{\, \chi^{+}(H \cdot L)}{\left| N \cdot L\right| + \sqrt{\alpha^2 + (1 - \alpha^2) (N \cdot L)^2}} \frac{\, \chi^{+}(H \cdot V)}{\left| N \cdot V \right| + \sqrt{\alpha^2 + (1 - \alpha^2) (N \cdot V)^2}}
3079+
\nu = \frac{\, \chi^{+}(H \cdot L)}{\left| N \cdot L\right| + \sqrt{\alpha^2 + (1 - \alpha^2) (N \cdot L)^2}} \frac{\, \chi^{+}(H \cdot V)}{\left| N \cdot V \right| + \sqrt{\alpha^2 + (1 - \alpha^2) (N \cdot V)^2}}
30803080
++++
30813081

30823082
Thus, we have the function

0 commit comments

Comments
 (0)