Skip to content

Optimizer options interface #52

Open
@FHoltorf

Description

@FHoltorf

Hey,

I would like to solve some quantum control problems via GRAPE but I need high precision with regard to stationarity. Unfortunately, I can't use Optim.jl because I have bounds on the control drives and it seems I am also not able to strengthen the convergence criteria in the L-BFGS-B default flexibly enough. I think that is the case at least? The GrapeResult object does not carry gradient information so I assume cannot use that to define my own convergence criterion and the corresponding LBFGSB.jl optionpgtol = 1e-5 appears to be hardcoded (see https://github.com/JuliaQuantumControl/GRAPE.jl/blob/83295ce48621430db739ce2cdee4afba5b9ee41e/src/backend_lbfgsb.jl#L8).

Am I missing a way to set the convergence criterion? If not, what's the better way to address that issue? Support bounds for Optim.jl optimizers, pass gradient information to the result object, or admit kwargs to set options for the default optimizer?

Thanks!
Flemming

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions