Skip to content

nable to execute HTTP request: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException #14584

Open
@starluo-stack

Description

@starluo-stack

Is there an existing issue for this?

  • I have searched the existing issues and did not find a match.

Who can help?

No response

What are you working on?

Dear sir,
I referenced your code to import pipeline, but encountered an error,

Current Behavior

I run the following script in Azure Databricks workspace , An error occurred
"""
import sparknlp
import os
from pyspark.sql import SparkSession
from pyspark.conf import SparkConf

os.environ['JAVA_HOME'] = 'C:\Program Files\Eclipse Adoptium\jdk-11.0.27.6-hotspot'
os.environ['HADOOP_HOME'] = 'C:\hadoop'
os.environ['SPARK_LOCAL_DIRS'] = 'C:\spark_temp'

spark = sparknlp.start(gpu=False,
apple_silicon=False,
aarch64=False,
memory="16G",
cache_folder="",
log_folder="",
cluster_tmp_dir="",
params={"spark.jars.repositories": "http://s3.amazonaws.com/auxdata.johnsnowlabs.com"},
real_time_output=False,
output_level=1)

print("Spark NLP version: ", sparknlp.version())
print("Apache Spark version: ", spark.version)

from pyspark.ml import Pipeline
from sparknlp.annotator import UniversalSentenceEncoder
from sparknlp.common import *
from sparknlp.base import *

newstestdataset = spark.read
.option("header", True)
.option("inferSchema", True)
.csv("test_data.csv")

newstestdataset.show(10)

document = DocumentAssembler()
.setInputCol("description")
.setOutputCol("document")

use = UniversalSentenceEncoder.pretrained()
.setInputCols(["document"])
.setOutputCol("sentence_embeddings")

pipeline = Pipeline(stages=[document, use])
testdataset = pipeline.fit(newstestdataset).transform(newstestdataset)

testdataset.show()

spark.stop()

“”“
py4j.protocol.Py4JJavaError: An error occurred while calling z:com.johnsnowlabs.nlp.pretrained.PythonResourceDownloader.getDownloadSize.
: com.amazonaws.SdkClientException: Unable to execute HTTP request: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target

Expected Behavior

The scripts are expected to run successfully.

Steps To Reproduce

The error script has been attached
"""
import sparknlp
import os
from pyspark.sql import SparkSession
from pyspark.conf import SparkConf

os.environ['JAVA_HOME'] = 'C:\Program Files\Eclipse Adoptium\jdk-11.0.27.6-hotspot'
os.environ['HADOOP_HOME'] = 'C:\hadoop'
os.environ['SPARK_LOCAL_DIRS'] = 'C:\spark_temp'

spark = sparknlp.start(gpu=False,
apple_silicon=False,
aarch64=False,
memory="16G",
cache_folder="",
log_folder="",
cluster_tmp_dir="",
params={"spark.jars.repositories": "http://s3.amazonaws.com/auxdata.johnsnowlabs.com"},
real_time_output=False,
output_level=1)

print("Spark NLP version: ", sparknlp.version())
print("Apache Spark version: ", spark.version)

from pyspark.ml import Pipeline
from sparknlp.annotator import UniversalSentenceEncoder
from sparknlp.common import *
from sparknlp.base import *

newstestdataset = spark.read
.option("header", True)
.option("inferSchema", True)
.csv("test_data.csv")

newstestdataset.show(10)

document = DocumentAssembler()
.setInputCol("description")
.setOutputCol("document")

use = UniversalSentenceEncoder.pretrained()
.setInputCols(["document"])
.setOutputCol("sentence_embeddings")

pipeline = Pipeline(stages=[document, use])
testdataset = pipeline.fit(newstestdataset).transform(newstestdataset)

testdataset.show()

spark.stop()

“”“

Spark NLP version and Apache Spark

Spark NLP version and Apache Spark
Spark NLP version: 5.5.3
spark.version; 3.2.1

Type of Spark Application

No response

Java Version

11.0.27" 2025-04-15

Java Home Directory

No response

Setup and installation

No response

Operating System and Version

No response

Link to your project (if available)

No response

Additional Information

No response

Metadata

Metadata

Assignees

Labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions