Skip to content

Error in La.svd(x, nu = 0) : infinite or missing values in 'x' #10

Open
@yueli8

Description

@yueli8

Hello Yuting,

Thank you for developing so nice software.

Thank you in advance for your great help!

Best,

Yue

> suppressMessages({
+     library(ggplot2)
+     library(CytoTree)
+     library(flowCore)
+     library(stringr)
+ })
> # Read fcs files
> fcs.files <- list.files("~/CyTOF_Data/20220830 PBMC Test2",pattern = '.FCS$', full = TRUE)
> fcs.data <- runExprsMerge(fcs.files, comp = FALSE, transformMethod = "none")
> recol <- c(`Sm147Di<147Sm_CD20>` = "CD20", `Sm154Di<154Sm_CD45>` = "CD45", 
+            `Gd160Di<160Gd_CD14>` = "CD14", `Ho165Di<165Ho_CD16>` = "CD16", 
+            `Er168Di<168Er_CD8>` = "CD8", `Er170Di<170Er_CD3>` = "CD3",
+            `Yb174Di<174Yb_CD4>` = "CD4")
> colnames(fcs.data)[match(names(recol), colnames(fcs.data))] = recol
> fcs.data <- fcs.data[, recol]
> day.list <- c("PBMC_Processed", "PBMC")
> meta.data <- data.frame(cell = rownames(fcs.data),
+                         stage = str_replace(rownames(fcs.data), regex(".FCS.+"), "") )
> meta.data$stage <- factor(as.character(meta.data$stage), levels = day.list)
> markers <- c("CD20","CD45","CD14","CD16","CD8","CD3","CD4")
> 
> # Build the CYT object
> cyt<- createCYT(raw.data = fcs.data, markers = markers,
+                 meta.data = meta.data,
+                 normalization.method = "log",
+                 verbose = TRUE)
2022-10-27 10:18:54 Number of cells in processing: 4000
2022-10-27 10:18:54 rownames of meta.data and raw.data will be named using column cell
2022-10-27 10:18:54 Index of markers in processing
2022-10-27 10:18:54 Creating CYT object.
2022-10-27 10:18:54 Determining normalization factors
2022-10-27 10:18:54 Normalization and log-transformation.
2022-10-27 10:18:54 Build CYT object succeed 
> cyt
CYT Information:
 Input cell number: 4000  cells 
 Enroll marker number: 7  markers 
 Cells after downsampling: 4000  cells 
> 
> set.seed(1)
> cyt <- runCluster(cyt, cluster.method = "som")
Mapping data to SOM

> 
> ## Mapping data to SOM
> # Do not perform downsampling
> set.seed(1)
> cyt <- processingCluster(cyt)
> # run Principal Component Analysis (PCA)
> cyt <- runFastPCA(cyt)
Error in La.svd(x, nu = 0) : infinite or missing values in 'x'

PBMC_Processed.zip
PBMC.zip

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions