@@ -310,7 +310,7 @@ def compare_cazy_families(fgp_df, args):
310
310
index .append ('Class' )
311
311
if args .tax_order :
312
312
index .append ('Order' )
313
- if args .tax_family_ :
313
+ if args .tax_family :
314
314
index .append ('Family' )
315
315
if args .genus :
316
316
index .append ('Genus' )
@@ -323,15 +323,15 @@ def compare_cazy_families(fgp_df, args):
323
323
fam_freq_genus_row_colours , fam_g_lut = build_row_colours (fam_freq_df_ggs , args .group_by , 'Set2' )
324
324
325
325
for file_format in args .formats :
326
- outpath_cm = outdir / f"cazy_family_clustermap.{ args . file_format } "
326
+ outpath_cm = outdir / f"cazy_family_clustermap.{ file_format } "
327
327
logger .warning (
328
328
f"Writing out clustermap of CAZy family frequencies in { file_format } format to:\n "
329
329
f"{ outpath_cm } "
330
330
)
331
331
build_family_clustermap (
332
332
fam_freq_df_ggs ,
333
333
row_colours = fam_freq_genus_row_colours ,
334
- fig_size = (( len (fam_freq_df_ggs ) .columns )* 0.4 , len (fam_freq_df_ggs )* 0.4 ),
334
+ fig_size = (len (fam_freq_df_ggs .columns )* 0.4 , len (fam_freq_df_ggs )* 0.4 ),
335
335
file_path = outpath_cm ,
336
336
file_format = format ,
337
337
lut = fam_g_lut ,
@@ -378,7 +378,7 @@ def compare_core_cazomes(fam_freq_df, fam_freq_df_ggs, all_families, args):
378
378
index .append ('Class' )
379
379
if args .tax_order :
380
380
index .append ('Order' )
381
- if args .tax_family_ :
381
+ if args .tax_family :
382
382
index .append ('Family' )
383
383
if args .genus :
384
384
index .append ('Genus' )
@@ -437,7 +437,7 @@ def find_always_cooccurring_families(fam_freq_df, fam_freq_df_ggs, all_families,
437
437
exclude_core_cazome = False ,
438
438
)
439
439
with open (outpath_all , "w" ) as fh :
440
- fh .write (cooccurring_fams_dict )
440
+ fh .write (str ( cooccurring_fams_dict ) )
441
441
442
442
grp_cooccuring_fams = {} # {genus: cooccurring_fams_d
443
443
for grp in set (fam_freq_df [args .group_by ]):
@@ -449,7 +449,7 @@ def find_always_cooccurring_families(fam_freq_df, fam_freq_df_ggs, all_families,
449
449
)
450
450
grp_cooccuring_fams [grp ] = grp_cooccurring_fams_dict
451
451
with open (outpath_grp , "w" ) as fh :
452
- fh .write (grp_cooccuring_fams )
452
+ fh .write (str ( grp_cooccuring_fams ) )
453
453
454
454
upsetplot_membership = []
455
455
upsetplot_membership = add_to_upsetplot_membership (upsetplot_membership , cooccurring_fams_dict )
@@ -473,7 +473,7 @@ def find_always_cooccurring_families(fam_freq_df, fam_freq_df_ggs, all_families,
473
473
474
474
# calculate frequencies
475
475
upset_plot_groups = get_upsetplot_grps (upsetplot_membership )
476
-
476
+ cooccurring_grp_freq_data = []
477
477
cooccurring_grp_freq_data = add_upsetplot_grp_freqs (
478
478
upset_plot_groups ,
479
479
cooccurring_grp_freq_data ,
@@ -511,7 +511,7 @@ def run_pca(fam_freq_df, fam_freq_df_ggs, all_families, args):
511
511
index .append ('Class' )
512
512
if args .tax_order :
513
513
index .append ('Order' )
514
- if args .tax_family_ :
514
+ if args .tax_family :
515
515
index .append ('Family' )
516
516
if args .genus :
517
517
index .append ('Genus' )
0 commit comments