forked from patrickloeber/snake-ai-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
executable file
·185 lines (145 loc) · 5.78 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import random
import numpy as np
from collections import deque
from game import SnakeGameAI, Direction, Point
from model import Linear_QNet, QTrainer
from helper import plot
MAX_MEMORY = 100_000
BATCH_SIZE = 1000
LR = 0.001
class Agent:
def __init__(self):
self.n_games = 0
self.epsilon = 0 # randomness
self.gamma = 0.9 # discount rate
self.memory = deque(maxlen=MAX_MEMORY) # popleft()
self.model = Linear_QNet(11, 256, 3)
self.trainer = QTrainer(self.model, lr=LR, gamma=self.gamma)
def get_state(self, game):
head = game.snake[0]
point_l = Point(head.x - 20, head.y)
point_r = Point(head.x + 20, head.y)
point_u = Point(head.x, head.y - 20)
point_d = Point(head.x, head.y + 20)
dir_l = game.direction == Direction.LEFT
dir_r = game.direction == Direction.RIGHT
dir_u = game.direction == Direction.UP
dir_d = game.direction == Direction.DOWN
state = [
# Danger straight
(dir_r and game.is_collision(point_r)) or
(dir_l and game.is_collision(point_l)) or
(dir_u and game.is_collision(point_u)) or
(dir_d and game.is_collision(point_d)),
# Danger right
(dir_u and game.is_collision(point_r)) or
(dir_d and game.is_collision(point_l)) or
(dir_l and game.is_collision(point_u)) or
(dir_r and game.is_collision(point_d)),
# Danger left
(dir_d and game.is_collision(point_r)) or
(dir_u and game.is_collision(point_l)) or
(dir_r and game.is_collision(point_u)) or
(dir_l and game.is_collision(point_d)),
# Move direction
dir_l,
dir_r,
dir_u,
dir_d,
# Food location
game.food.x < game.head.x, # food left
game.food.x > game.head.x, # food right
game.food.y < game.head.y, # food up
game.food.y > game.head.y # food down
]
return np.array(state, dtype=int)
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done)) # popleft if MAX_MEMORY is reached
def train_long_memory(self):
if len(self.memory) > BATCH_SIZE:
mini_sample = random.sample(self.memory, BATCH_SIZE) # list of tuples
else:
mini_sample = self.memory
states, actions, rewards, next_states, dones = zip(*mini_sample)
self.trainer.train_step(states, actions, rewards, next_states, dones)
#for state, action, reward, nexrt_state, done in mini_sample:
# self.trainer.train_step(state, action, reward, next_state, done)
def train_short_memory(self, state, action, reward, next_state, done):
self.trainer.train_step(state, action, reward, next_state, done)
def get_action(self, state):
# random moves: tradeoff exploration / exploitation
self.epsilon = 80 - self.n_games
final_move = [0,0,0]
if random.randint(0, 200) < self.epsilon:
move = random.randint(0, 2)
final_move[move] = 1
else:
state0 = torch.tensor(state, dtype=torch.float)
prediction = self.model(state0)
move = torch.argmax(prediction).item()
final_move[move] = 1
return final_move
def get_action_model_only(self, state):
final_move = [0, 0, 0]
state_tensor = torch.tensor(state, dtype=torch.float)
with torch.no_grad(): # Disable gradient tracking since we're not training
prediction = self.model(state_tensor)
move = torch.argmax(prediction).item()
final_move[move] = 1
return final_move
def train():
plot_scores = []
plot_mean_scores = []
total_score = 0
record = 0
agent = Agent()
game = SnakeGameAI()
while True:
# get old state
state_old = agent.get_state(game)
# get move
final_move = agent.get_action(state_old)
# perform move and get new state
reward, done, score = game.play_step(final_move)
state_new = agent.get_state(game)
# train short memory
agent.train_short_memory(state_old, final_move, reward, state_new, done)
# remember
agent.remember(state_old, final_move, reward, state_new, done)
if done:
# train long memory, plot result
game.reset()
agent.n_games += 1
agent.train_long_memory()
if score > record:
record = score
agent.model.save()
print('Game', agent.n_games, 'Score', score, 'Record:', record)
plot_scores.append(score)
total_score += score
mean_score = total_score / agent.n_games
plot_mean_scores.append(mean_score)
plot(plot_scores, plot_mean_scores)
def play_with_model():
agent = Agent()
# Load the saved model
agent.model.load_state_dict(torch.load('model/model.pth'))
agent.model.eval() # Set the model to evaluation mode (no training)
game = SnakeGameAI()
while True:
game_over, player_score = game.play_step_player()
state_old = agent.get_state(game)
final_move = agent.get_action_model_only(state_old)
reward, done, score = game.play_step(final_move)
state_new = agent.get_state(game)
if done or game_over:
if game_over:
print('AI Wins!')
else:
print('Player Wins!')
print("Player Score: ", game.score_player, "\nAI Score: ", game.score)
break
if __name__ == '__main__':
# train()
play_with_model()