-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPHYS 3031 Notes.tex
2089 lines (1406 loc) · 58.6 KB
/
PHYS 3031 Notes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%%%%%%%%%%%%% LaTeX Compiler: XeLaTeX %%%%%%%%%%%%%%%
% License for LaTeX Configuration File
% This LaTeX configuration file is created by Lin, Xuanyu, HKUST, and is provided under the terms of the MIT License. You are free to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of this configuration file, subject to the following conditions:
% 1. The above copyright notice and this license notice shall be included in all copies or substantial portions of the configuration file.
% 2. The configuration file is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the configuration file or the use or other dealings in the configuration file.
% By using this configuration file, you agree to the terms and conditions of this license. If you do not agree to these terms and conditions, you must not use the configuration file.
\documentclass[10pt]{article}
% Text setting
% \usepackage{newtxtext}
\usepackage{setspace}
\usepackage[dvipsnames,svgnames]{xcolor}
\usepackage{comment}
% Chinese characters setup
\usepackage{fontspec}
\usepackage{xeCJK}
\setCJKmainfont{SimSun}
% Dealing with special characters
\usepackage[utf8]{inputenc}
% \usepackage[T1]{fontenc} % Conflict with fontspec & xeCJK
\usepackage{pifont}
% Mathematical formula typesetting
\usepackage{unicode-math}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{mathrsfs}
\setmathfont{Latin Modern Math}
% \usepackage{amssymb} % Contained in package unicode-math
% Jump (Math) \llbracket & \rrbracket
\usepackage{stmaryrd}
% Chemical formulas and equations
\usepackage[version=4]{mhchem}
% Graphics
\usepackage{graphicx}
\graphicspath{ {./images/} }
\usepackage[export]{adjustbox}
% Tables, enumeration
\usepackage{multirow}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{enumitem}
% Adjust the position
\usepackage{float}
% Frames, reference
\usepackage{framed}
\usepackage[strict]{changepage}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=black,
filecolor=magenta,
urlcolor=blue,
}
% Page & paragraph settings
\usepackage{fancyhdr}
\usepackage{geometry}
\geometry{left=1.5cm, right=1.5cm, top=2cm, bottom=2cm}
\usepackage{indentfirst}
\setlength{\parindent}{2em}
\setlength{\parskip}{0.5em}
% Algorithm & coding environment
\usepackage[ruled,vlined]{algorithm2e}
\usepackage[framemethod=TikZ]{mdframed}
\usepackage{listings}
\usepackage{wrapfig}
\usepackage{booktabs}
\usepackage{makecell}
% New command
\newcommand\course{PHYS 3031}
\newcommand\coursetitle{Mathematical Methods in Physics II}
\newcommand\semester{Fall 2023}
\renewcommand{\labelenumi}{\alph{enumi}}
\newcommand{\Z}{\mathbb Z}
\newcommand{\R}{\mathbb R}
\newcommand{\Q}{\mathbb Q}
\newcommand{\NN}{\mathbb N}
\newcommand{\dd}{\mathrm{d}}
\DeclareMathOperator{\Mod}{Mod}
\renewcommand\lstlistingname{Algorithm}
\renewcommand\lstlistlistingname{Algorithms}
\def\lstlistingautorefname{Alg.}
%%%%%%%%%%%%%%% Page Setup %%%%%%%%%%%%%%%
\pagestyle{fancy}
\headheight 35pt
\lhead{\course\ \coursetitle\ \semester}
\rhead{\includegraphics[width=2.5cm]{logo-hkust.png}}
\lfoot{}
\pagenumbering{arabic}
\cfoot{}
\rfoot{\small\thepage}
\headsep 1.2em
%%%%%%%%%%%%%%% Boxframe Setup %%%%%%%%%%%%%%%
\definecolor{blueshade}{rgb}{0.95,0.95,1} % Horizontal Line: DarkBlue
\definecolor{greenshade}{rgb}{0.90,0.99,0.91} % Horizontal Line: Green
\definecolor{redshade}{rgb}{1.00,0.90,0.90}% Horizontal Line: LightCoral
\definecolor{brownshade}{rgb}{0.99,0.97,0.93} % Horizontal Line: BurlyWood
\newenvironment{formal}[2]{%
\def\FrameCommand{%
\hspace{1pt}%
{\color{#1}\vrule width 2pt}%
{\color{#2}\vrule width 4pt}%
\colorbox{#2}%
}%
\MakeFramed{\advance\hsize-\width\FrameRestore}%
\noindent\hspace{-4.55pt}% Disable indenting first paragraph
\begin{adjustwidth}{}{7pt}%
\vspace{2pt}\vspace{2pt}%
}
{%
\vspace{2pt}\end{adjustwidth}\endMakeFramed%
}
%%%%%%%%%%%%%%% Problem Environment Setup %%%%%%%%%%%%%%%
\mdfdefinestyle{problemstyle}{
linecolor=black,linewidth=1pt,
frametitlerule=true,
frametitlebackgroundcolor=gray!20,
roundcorner=10pt,
innertopmargin=\topskip,
frametitlealignment=\hspace{0em},
}
\mdfsetup{skipabove=\topskip,skipbelow=\topskip}
\mdtheorem[style=problemstyle]{Problem}{Problem}
\newenvironment{Solution}{\textbf{Solution.}}
%%%%%%%%%%%%%%% Coding Environment S6etup %%%%%%%%%%%%%%%
\lstset{
basicstyle=\tt,
% Line number
numbers=left,
rulesepcolor=\color{red!20!green!20!blue!20},
escapeinside=``,
xleftmargin=2em,xrightmargin=2em, aboveskip=1em,
% Background frame
framexleftmargin=1.5mm,
frame=shadowbox,
% Background color
backgroundcolor=\color[RGB]{252,236,227},
% Style
keywordstyle=\color{blue}\bfseries,
identifierstyle=\bf,
numberstyle=\color[RGB]{0,192,192},
commentstyle=\it\color[RGB]{0,153,51},
stringstyle=\rmfamily\slshape\color[RGB]{128,0,0},
% Show space
showstringspaces=false
}
%%%%%%%%%%%%%%% Document Begins %%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%% Title Page %%%%%%%%%%%%%%%
\begin{titlepage}
\begin{center}
\vspace*{3cm}
\Huge
\hrulefill
\vspace{1cm}
\huge
\textbf{PHYS 3031 Course Notes\\}
\vspace{1cm}
\textbf{Mathematical Methods in Physics II}
\vspace{1cm}
\hrulefill
\vspace{1.5cm}
\Large
\textbf{LIN, Xuanyu}
\vfill
$\mathscr{MATH\ METHODS\ IN\ PHYSICS}$
\vspace{1cm}
\course \ Mathematical Methods in Physics II
\vspace{1cm}
\includegraphics[width=0.4\textwidth]{logo-hkust.png}
\\
\Large
\today
\end{center}
\end{titlepage}
%%%%%%%%%%%%%%% Article Begins %%%%%%%%%%%%%%%
\tableofcontents
\newpage
\section{Series}
\subsection[Convergence Condition for Positive Series]{Convergence Condition for Positive Series $\sum\limits_{n=1}^{\infty} a_n$}
Necessary condition: $\lim_{N\to \infty} a_N = 0$
Hierarchy: $N! > a^N > N^b > \ln{N}$
\textbf{Stirling's Formula} $\ln{N!} \approx N\ln{N}-N \approx N\ln{N}$
\textbf{Comparison Test 1} $\sum a_n < \sum b_n$, $b$ converges $\to$ $a$ converges
\textbf{Comparison Test 2 (Integral Test)} $\sum a_n \& \int a(n) \dd n$ share the same fate
\textbf{Ratio Test}
$\lim_{n\to \infty} \frac{a_{n+1}}{a_n} = \rho$, $\rho > 1 \to \text{Diverges}$, $\rho < 1 \to \text{Converges}$
\textbf{Extended (Special) Comparison Test}
$\lim_{n\to \infty} \frac{a_n}{b_n} = 1$, then $\sum a_n \& \sum b_n$ share the same fate
\subsection[Convergence Condition for Alternating Series]{Convergence Condition for Alternating Series $\sum\limits_{n=1}^{\infty} (-1)^n a_n$}
If $a_n>0, \lim_{n\to\infty} a_n = 0$, this series may diverge.
(1) Absolute Convergence: If $\sum a_n$ converges, then $\sum (-1)^n a_n$ converges
(2) Convergence Condition: $\lim_{n\to\infty} \text{ and } a_n > a_{n+1}$
(3) Diverge: If $a_n < a_{n+1}$, then the series diverges
\subsection[Power Series]{Power Series $\sum_{n=0}^\infty a_n (x-x_0)^n \rightarrow f(x)$}
Convergent condition for $x$:
$\lim_{n\to\infty} \big| \frac{a_{n+1}}{a_n} (x-x_0) \big| < 1$
\subsection{Asymptotic Series 渐近级数}
For functions $f(z)$ and $\phi(z)\neq 0$ defined in $\mathring{U}(z_0)$, we say that $f(z) = O(\phi(z))$ at $z\to z_0$ if $f(z)/\phi(z)$ is bounded, and that $f(z) = o(\phi(z))$ at $z\to z_0$ if $f(z)/\phi(z) \to 0$.
If for $\forall m$, when $z\to z_0$,
$$
f(z) - \sum_{n=0}^m a_n \phi_n(z) = o(\phi_m(z))
$$
we say that $\sum_{n=0}^m a_n \phi_n(z)$ is an asymptotic series for $f(z)$, even though the series may not converge:
$$
f(z) \sim \sum_{n=0}^m a_n \phi_n(z)
$$
\section[Taylor Expansion]{Taylor Expansion $\sum_{n=0}^\infty a_n (x-x_0)^n$}
$$
\sin x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1}\ \ \ \ \ \cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n}\ \ \ \ \ \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + ...\ \ \ \ \ e^{x} = \sum_{n=0}^\infty \frac{x^n}{n!}
$$
$$
\arctan x = \int_0^x \sum_{n=0}^\infty (-t^2)^n \dd t = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{2n+1} \text{, where } |x| < 1
$$
\subsection{Leibniz Rule}
$$
\frac{\dd^{(M)}}{\dd x^M} (u\cdot v) = \bigg(\frac{\dd u}{\dd x}\frac{\partial}{\partial u} + \frac{\dd v}{\dd x}\frac{\partial}{\partial v}\bigg)^M (u\cdot v) = \sum_{n=0}^M C_M^n \bigg(\frac{\dd^{(M-n)} u}{\dd x^{(M-n)}}\bigg) \bigg(\frac{\dd^{(n)} v}{\dd x^n}\bigg)
$$
\subsection{Error Estimation when N Terms are Kept}
$$
f(x) \approx \sum_{n=0}^N (-1)^n a_n (x-x_0)^n\ \ \ \ \ b_n \equiv a_n(x-x_0)^n > 0
$$
\subsubsection[Alternating Series]{Alternating Series $S = \sum_{n=0}^\infty (-1)^n b_n$}
Maximum possible error for $f(x)$ is
$$
b_{N+1} = a_{N+1} \big| x-x_0 \big|^{N+1}
$$
\subsubsection["Positive" Series]{"Positive" Series $S = \sum_{n=0}^\infty a_n (x-x_0)^n, a_n (x-x_0)^n > 0$}
If it converges when $\big|x-x_0\big| < 1$, and $\big|a_{n+1}\big| < \big|a_n\big|$, then
$$
S - S_N < \frac{\big|a_{N+1}\big| \big|x-x_0\big|^{N+1}}{1-\big|x-x_0\big|}
$$
Note: In practice, Taylor Expansion is useful when $\big|x-x_0\big| << 1$, and an upper limit of error $\epsilon$ to be tolerated is given, even if the series converges for any value of $(x-x_0)$.
\subsection{L'Ĥopital's Rule}
Theorem 1:
$
\lim_{x\to x_0} \frac{f(x)}{g(x)} \overset{f(x_0)=0}{\underset{g(x_0)=0}\longrightarrow} \frac{0}{0} \implies \lim_{x\to x_0} \frac{f(x)}{g(x)} \longrightarrow \frac{f'(x)}{g'(x)}
$
Theorem 2:
$
\lim_{x\to x_0} \frac{f(x)}{g(x)} \overset{f(x_0)=0}{\underset{g(x_0)=0}\longrightarrow} \frac{\infty}{\infty} \implies \lim_{x\to x_0} \frac{f(x)}{g(x)} \longrightarrow \frac{f'(x)}{g'(x)} \text{(proved by the inverse of the fraction)}
$
\section{Complex Analysis}
Convergence of the Complex Series $\sum^\infty c_n = \sum^\infty a_n + i\sum^\infty b_n \implies a_n \text{and } b_n$ both converges.
Complex Power Series $\sum^\infty c_n z^n = f(z)$ with convergence region $\lim_{n\to\infty} \big|\frac{c_{n+1}}{c_n} z\big| < 1$.
Euler's Formula: $e^z = \cos z + i\sin z$ help solving the inverse trigonometric functions.
\subsection[Complex Functions]{Complex Functions $f(z) = f(x + iy) = u(x, y) + iv(x, y)$}
\textbf{Analytic Function}
Property: $f'(z) = \lim_{\Delta z \to 0} \frac{f(z+\Delta z) - f(z)}{\delta z}$ is \textbf{unique} regardless how $\Delta z \to 0$.
Necessary and Sufficient Conditions:
Cauchy-Riemann Conditions in Cartesian Coordinate: $\partial_x u = \partial_y v,\quad \partial_y u = -\partial_x v$
Cauchy-Riemann Conditions in Polar Coordinate: $\partial_\theta u = -\rho \partial_\rho v, \quad \partial_\theta v = \rho \partial_\rho u$
\textbf{Isolated Zeros 孤立零点}
If $f$ is analytic at $z_0$, then $f$ has a zeo of order $m\geq 1$ at $z_0$ if
$$
f(z_0) = f'(z_0) = \cdots = f^{(m-1)}(z_0) = 0
$$
and $f^{(m)}(z_0) \neq 0$. Note that $f$ becomes a \textbf{branch point} if $m$ is not an integer, and that $f$ is not analytic at that point.
\textbf{Theorem:} If $z=a$ is a zero of $f(z)$ which is not a constant at $\mathring{U}(a)$, then $\exists \rho > 0$, $f(z)$ doesn't have any zeros in the region $0 < |z-a| < \rho$.
\subsection{Line Integrals}
With the substitution of line $c: y = g(x)$, $\dd y = g'(x)\dd x$
$$
\lim_{\delta z_n\to 0} \sum_{z_n\in c} f(z_n) \Delta z_n = \int_c f(z)\dd z = \int_c f(x+iy)(\dd x + i\dd y) = \int_a^b f(x+ig(x))(1+ig'(x))\dd x \implies \int_c f(z)\dd z = -\int_{-c} f(z)\dd z
$$
\textbf{Cauchy's Theorem for Analytic Functions:}
$$
\oint_C f(z) \dd z = 0
$$
\textbf{Two Foundation Lemmas -} \href{https://en.wikipedia.org/wiki/Jordan%27s_lemma}{\textbf{Jordan's Lemma}}
$\bullet$ Small Arc Lemma (小圆弧引理):
If $f(z)$ is continuous in $\mathring{U}(a)$, and $(z-a)f(z)$ approaches $k$ consistently as $|z-a|\to 0$ within $\theta_1 \leq \arg(z-a) \leq \theta_2$, then
$$
\lim_{\delta \to 0} \int_{C_{\delta}} f(z) \dd z = ik(\theta_2-\theta_1)
$$
$\bullet$ Big Arc Lemma (大圆弧引理):
If $f(z)$ is continuous in $\mathring{U}(\infty)$, and $zf(z)$ approaches $K$ consistently as $z \to \infty$ within $\theta_1 \leq \arg(z-a) \leq \theta_2$, then
$$
\lim_{R \to \infty} \int_{C_R} f(z) \dd z = iK(\theta_2-\theta_1)
$$
\textbf{Cauchy's Integral Formula:} $f(z)$ is analytic inside and on the contour, then for $\forall z_0$ inside the contour,
$$
\implies f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)\dd z}{z-z_0}\\
\implies f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0+Re^{i\theta}) \dd \theta \text{ (Mean Value Theorem 均值定理)}
$$
i.e. Get full information inside by the information on the boundary only.
\textbf{Note:} If $z_0$ were outside the contour, then
$\bullet$ If $f$ is analytic inside $C$, then $\frac{1}{2\pi i} \oint_C \frac{f(z)\dd z}{z-z_0} = 0$
$\bullet$ If $f$ is analytic outside $C$ and $\lim_{z\to\infty} f(z) = K$, then $\frac{1}{2\pi i} \oint_C \frac{f(z)\dd z}{z-z_0} = f(z_0) - K$
$\bullet$ The above two lemmas are NOT contradictory. In fact, if a complex function is analytic and bounded within $U(\infty)$, then it must be a constant function.
\textbf{Liouville Theorem (in Complex Analysis) 刘维尔定理}
Every bounded entire function must be constant. That is, every holomorphic function $f$ for which there exists a positive number $M$ such that $|f(z)|\leq M$ for all $z\in\mathbb{C}$ is constant. Equivalently, non-constant holomorphic functions on $\mathbb{C}$ have unbounded images.
\textbf{Poisson's Formula}
Idea: If $f(z=x+iy) = u(x, y) + iv(x, y)$ is analytic on the upper-half plane and that we only know the value of $u(x, 0)$ or $v(x, 0)$, we can first get the value of $f(x\in\R)$, then apply the Cauchy's Integral Formula to get all the complex value on the upper-half plane:
$$
f(z) = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{u(\xi,0)}{\xi-(x+iy)} \dd \xi = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{v(\xi,0)}{\xi-(x+iy)} \dd \xi
$$
$$
f(z) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{(\xi-x)^2+y^2} \dd \xi = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{(\xi-x)f(\xi)}{(\xi-x)^2+y^2} \dd \xi
$$
\subsection{Taylor Series}
\textbf{Derivative of $f(z)$}
$$
f^{(n)}(a) \equiv \frac{\dd^{(n)}f}{\dd a^n} = \frac{n!}{2\pi i} \oint_C \frac{f(z) \dd z}{(z-a)^{n+1}}
$$
\begin{wrapfigure}{r}{0.14\textwidth}
\centering
\includegraphics[width=0.14\textwidth]{img3-1}
\end{wrapfigure}
\textbf{Taylor Series $f(z) = \sum a_n (z-z_0)^n$}
Suppose $f(z)$ has a singular point at $z_1$, we can expand $f(z)$ at $z_0$:
$$
f(z) = \frac{1}{2\pi i} \oint_C \frac{f(z')\dd z'}{z'-z} = \frac{1}{2\pi i} \sum_{n=0}^{\infty} (z-z_0)^n \oint_C \frac{f(z')\dd z'}{(z'-z_0)^{n+1}} = \sum_{n=0}^{\infty} a_n (z-z_0)^n
$$
$$
a_n \equiv \frac{1}{2\pi i} \oint_C \frac{f(z')\dd z'}{(z'-z_0)^{n+1}} = \frac{1}{n!} \frac{\dd^n f(z_0)}{\dd z^n}
$$
\subsection{Lauren Series}
Suppose $f(z)$ has a pole at $z_0$, define the hole as order $N \geq 1$ at $z_0$ if $\lim_{z\to z_0} (z-z_0)^N f(z)$ is finite and non-zero. ("Essential Pole" if such $N\to\infty$ like $e^{1/z}$ at $z=0$)
$f(z)$ can be expressed as
$$
f(z) = \sum_{m=0}^\infty a_m (z-z_0)^m + \sum_{n=1}^N \frac{b_m}{(z-z_0)^n} \text{ as } \lim_{z\to z_0} (z-z_0)^N f(z) = b_N
$$
\begin{wrapfigure}{r}{0.14\textwidth}
\centering
\includegraphics[width=0.14\textwidth]{img3-2}
\end{wrapfigure}
$$
f(z) = \frac{1}{2\pi i} \oint_{C_1} \frac{f(z')\dd z'}{z'-z} + \oint_{C_2} \frac{f(z')\dd z'}{z'-z} = I_1 + I_2
$$
We have
$$
a_n = \frac{1}{2\pi i} \oint_{C_1} \frac{f(z')\dd z'}{(z'-z_0)^{n+1}} \quad b_1 = \frac{1}{2\pi i} \oint_{C_2} f(z')\dd z' \quad b_{n+1} = \frac{1}{2\pi i} \oint_{C_2} f(z')(z'-z_0)^n\dd z' \quad \text{(Not Useful)}
$$
Note that when $f(z)$ is analytic at $z_0$, $a_n$ becomes the same as the coefficient in Taylor Series, and $b_i \equiv 0$ for $\forall i$.
\subsection{Analytic Continuation 解析延拓}
Suppose $f_1(z)$ is analytic in region $g_1$, $f_2(z)$ is analytic in region $g_2$, such that $g_1 \cap g_2 \neq \emptyset$. If $f_1(z) \equiv f_2(z)$ in $g_1 \cap g_2$, then $f_2(z)$ is the analytic continuation for $f_1(z)$ in region $g_2$.
\subsection{Residue Theorem 留数定理}
We want to evaluate $\oint_C f(z) \dd z$ around the pole. By applying the Lauren Series, one can prove that
$$
\oint_C f(z) \dd z = 2\pi i b_1
$$
\newpage
To find $b_1$, notice that $\lim_{z\to z_0} (z-z_0)^N f(z)$ is finite and all the other terms in the Lauren Series would disappear by taking $(N-1)$ times derivatives and taking $z = z_0$:
$$
b_1 = \lim_{z\to z_0} \frac{g^{(M-1)}(z)}{(M-1)!}, \text{ where } g(z) \equiv (z-z_0)^M f(z),\ M\geq N
$$
$$
\text{ ("$\geq$" to overkill the denominator, theoretically taking $M=N$ is enough)}
$$
We then define the coefficient $b_1$ of the Lauren Series at the pole $z_0$ as $b_1(z_0) \equiv R(z_0)$, and refer as the \textbf{residue} of $f(z)$ at $z_0$
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{img3-3}
\end{figure}
If $f(z)$ has singular points $z_1, z_2, \cdots, z_n$ inside contour $C$, then
$$
\oint_C f(z)\dd z = 2\pi i \sum_{n=1}^N R(z_n)
$$
\textbf{Residue at Infinity}
If $\infty$ is NOT a non-isolated singularity, define
$$
R(f(\infty)) = \frac{1}{2\pi i} \oint_{C'} f(z) \dd z
$$
where $C'$ is a closed curve \textbf{clockwise} around a point at infinity.
Note that
$$
\begin{aligned}
R(f(\infty)) &= \frac{1}{2\pi i} \oint_{C'} f(z) \dd z = - \frac{1}{2\pi i} \oint_{C'} \frac{f(1/t)}{t^2} \dd t\\
&= - \frac{f(1/t)}{t^2} \text{\quad$t^{-1}$'s coefficient expanding at $t=0$}\\
&= - f(1/t) \text{\quad$t^{1}$'s coefficient expanding at $t=0$}\\
&= - f(z) \text{\quad$z^{-1}$'s coefficient expanding at $z=\infty$}
\end{aligned}
$$
Note: $R(f(\infty))$ may NOT be zero even if $f(z)$ is analytic at $z=\infty$.
\subsubsection[Rational Trignometric Function]{Rational Trignometric Function $\int_{0}^{2\pi} f(\sin \theta, \cos \theta) \dd \theta$}
By applying the transformation below,
$$
\sin \theta = \frac{z^2-1}{2iz} \quad \cos \theta = \frac{z^2+1}{2z} \quad \dd \theta = \frac{\dd z}{iz}
$$
$$
\int_{0}^{2\pi} f(\sin \theta, \cos \theta) \dd \theta = \oint_{|z|=1} f(\frac{z^2-1}{2iz}, \frac{z^2+1}{2z}) \frac{\dd z}{iz}
$$
\begin{formal}{Brown}{brownshade}
\textbf{Example:}
$$
\begin{aligned}
\int_{-\pi}^{\pi} \frac{1}{1+\epsilon \cos \theta} \dd z\ (|\epsilon|<1) &= \oint_{|z|=1} \frac{2}{\epsilon z^2+2z+\epsilon} \frac{\dd z}{i} = 2\pi\sum_{|z|<1} R\bigg(\frac{2}{\epsilon z^2+2z+\epsilon}\bigg)\\
&= 2\pi \frac{2}{\frac{\dd}{\dd z}(\epsilon z^2+2z+\epsilon) \big|_{z=(-1+\sqrt{1-\epsilon^2})/\epsilon}} = \frac{2\pi}{\sqrt{1-\epsilon^2}}
\end{aligned}
$$
\end{formal}
\subsubsection[Improper Intergral]{Improper Intergral (over $\mathbb{R}$) $\int_{-\infty}^{\infty} f(x) \dd x$}
%\textbf{Requirements:} $\lim_{R\to\infty} f(x)$ exists
\begin{figure}[h]
\centering
\includegraphics[width=0.14\textwidth]{img3-4}
\end{figure}
\begin{formal}{Brown}{brownshade}
\textbf{Example:}
\[
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{1+x^2} \dd x &= \oint_{C_1+C_2} \frac{1}{1+z^2} \dd z = 2\pi i R(i) = \pi
\end{aligned}
\]
\textbf{Note:} This requires the integral around the infinite point to be exist, so that when the radius of the integral path $C_2 \rightarrow \infty$, the integral $\rightarrow 0$.
\end{formal}
\begin{formal}{Blue}{blueshade}
\textbf{Properties:}
In general,
\[
\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \dd x = 2 \pi i \sum_{i=1}^N R(z_n)
\]
where $P(x)$ and $Q(x)$ are polynomials and that \textbf{$Q(x)$ is at least two orders higher than $P(x)$, and have no real roots} (i.e. No extra poles on the x-axis).
Such order difference is required because
\[
\int_{C_2} \frac{P(z)}{Q(z)} \dd z \text{ as $C_2 \to \infty$ requires } \lim_{\rho\to\infty} \frac{P(\rho e^{i\theta})}{Q(\rho e^{i\theta})} i\rho e^{i\theta} \sim \lim_{\rho\to\infty} \rho^{1-M} = 0 \implies \text{Integer }M \geq 2
\]
\end{formal}
To deal with the poles on the x-axis when computing the (improper) integral over the real numbers, one can make use of the Jordan's Lemma (See Page 4) to compute the integral over a semi-circle to get the \textbf{Principal Value (PV)} at that point.
\begin{formal}{Blue}{blueshade}
\textbf{Properties for Poles on the Real Axis (Corollary of Jordan's Lemma):}
\noindent Make substitutions: $z-z_0 = \rho e^{i\theta},\ \dd z = i\rho e^{i\theta} \dd \theta$
\[
PV(z_0) = \int_{C(z_0)} f(z) \dd z = \lim_{\rho\to 0} \int_{C_\rho(z_0)} f(z) \dd z = i \lim_{\rho\to 0} \int_{\theta_1}^{\theta_2} f(z_0+\rho e^{i\theta}) \rho e^{i\theta} \dd \theta
\]
Suppose $z_0$ is a pole of order 1 on the real axis. According to the Lauren Series:
\[
\begin{aligned}
&f(z) = \sum_{m=0}^\infty a_m (z-z_0)^m + \frac{b_1}{z-z_0}\\
&\implies \int_{C(z_0)} (z-z_0)^m \dd z = \lim_{\rho\to 0} \int_{C(z_0)} \rho^m e^{im\theta} i\rho e^{i\theta} \dd \theta = i \lim_{\rho\to 0} \int_{\theta_1}^{\theta_2} \rho^{m+1} e^{i(m+1)\theta} \dd \theta = 0\\
&\implies PV = i \lim_{\rho\to 0} \int_{\theta_1}^{\theta_2} f(z_0 + \rho e^{i\theta}) \rho e^{i\theta} \dd \theta = ib_1 \lim_{\rho\to 0} \int_{\theta_1}^{\theta_2} \frac{\rho e^{i\theta}}{\rho e^{i\theta}} \dd \theta = ib_1 (\theta_2 - \theta_1) = i(\theta_2-\theta_1) R(z_0)
\end{aligned}
\]
\end{formal}
\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{img3-5}
\end{figure}
\begin{formal}{Brown}{brownshade}
\textbf{Example: PV of the Integeal of $\frac{1}{x}$}
\noindent In general,
\[
\int_{x_1}^{x_2} \frac{\dd x}{x} = \ln \bigg| \frac{x_2}{x_1} \bigg|
\]
where, when $x_1 < 0, x_2 > 0$,
\[
PV(\int_{x_1}^{x_2} \frac{\dd x}{x}) = \lim_{\epsilon\to 0} \bigg[ \int_{x_1}^{-\epsilon} \frac{\dd x}{x} + \int_{\epsilon}^{x_2} \frac{\dd x}{x} \bigg] = \lim_{\epsilon\to 0} \bigg[ \ln \bigg| \frac{-\epsilon}{x_1} \bigg| + \ln \bigg| \frac{x_2}{\epsilon} \bigg| \bigg] = \ln \bigg| \frac{x_2}{x_1} \bigg|
\]
\end{formal}
\subsubsection{Other Possible Integral Path}
\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.28\textwidth}
\centering
\includegraphics[width=\textwidth]{img3-6}
\end{subfigure}
\begin{subfigure}[b]{0.28\textwidth}
\centering
\includegraphics[width=\textwidth]{img3-7}
\end{subfigure}
\begin{subfigure}[b]{0.28\textwidth}
\centering
\includegraphics[width=\textwidth]{img3-8}
\end{subfigure}
\begin{subfigure}[b]{0.28\textwidth}
\centering
\includegraphics[width=\textwidth]{img3-9}
\end{subfigure}
\begin{subfigure}[b]{0.28\textwidth}
\centering
\includegraphics[width=\textwidth]{img3-10}
\end{subfigure}
\caption{HKUST PHYS3031, 2023, Complex Analysis Page 93-97}
\end{figure}
\newpage
\subsection{Argument (Phase) Principle}
\begin{formal}{Blue}{blueshade}
\textbf{Theorem 1:}
If $f(z)$ has a root $z_1$ of order $n_1$ within the contour $C$, then
\[
I = \oint_C \frac{f'(z)}{f(z)} \dd z = 2\pi i n_1
\]
Proof goes as $G(z) = \frac{\dd}{\dd z} \ln(f(z))$ has a pole of order 1 at $z_1$ with residue $n_1$.
\noindent \textbf{Theorem 2}
If $f(z)$ has a pole $z_1$ of order $p_1$ within the contour $C$, then
\[
I = \oint_C \frac{f'(z)}{f(z)} \dd z = -2\pi i p_1
\]
Proof goes according to the Lauren Series of $f(z)$.
\noindent \textbf{Corollary}
If $f(z)$ is analytic everywhere, for a very large contour $C$ that contains all roots,
\end{formal}
\newpage
\begin{table}[H]
\centering
\begin{tabular}{|c|c|}
\hline
Nouns & Explanations \\
\hline
Analytic (Holomorphic) Point & A point which the function has a derivative at and in a neighborhood around that point \\
Branch Point 分枝点& A point such that all of its neighborhoods contain a point that has more than n values \\
Regular Point & A point in the function's domain where the function is differentiable \\
Singularity 奇点& \thead{Essential Singularity 本性奇点: $\lim_{z\to z_0} (z-z_0)^N f(z)$ is always infinite \\ Isolated Singularity 孤立奇点: One that has no other singularities close to it \\ Pole 极点: Lauren Series contains finitely many negative power terms \\ Removable Singularity 可去奇点: Lauren Series doesn't contain term with negative power terms} \\
\hline
\end{tabular}
\caption{Explanation of Important Nouns}
\end{table}
\newpage
\section{Special Functions}
\newpage
\section{Partial Differential Equations}
\subsection*{Typical Types of PDE}
\[
\begin{aligned}
&\text{Laplace Equation: } \nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0\\
&\text{Diffusion Equation: } \alpha^2 \nabla^2 u = \frac{\partial u}{\partial t}\\
&\text{Wave Equation: } \nabla^2 u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}\\
\end{aligned}
\]
\subsection{2D Laplace Equation}
\[
\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0\\
\]
\subsubsection*{Case 1}
\begin{wrapfigure}{r}{0.14\textwidth}
\centering
\includegraphics[width=0.14\textwidth]{img5-1}
\end{wrapfigure}
Seperation of variables: $T(x, y) = X(x)Y(y)$
\[
\implies \frac{1}{X} \frac{\dd^2 X}{\dd x^2} = -\frac{1}{Y} \frac{\dd^2 Y}{\dd y^2} = \lambda
\]
Raises two sets of solution for $\lambda > 0$ and $\lambda < 0$.
For the given boundary condition, we have $\lambda = K^2 < 0$, then
\[
\begin{aligned}
&\frac{\dd^2 X}{\dd x^2} = -K^2 X \implies X(x) = A \cos Kx + B \sin Kx\\
&\frac{\dd^2 Y}{\dd y^2} = K^2 Y \implies Y(y) = C \cosh Ky + D \sinh Ky
\end{aligned}
\]
With the boundary condition, the general solution is given by
\[
T(x,y) = \sum_{n=1}^\infty a_n T_n(x,y) = \sum_{n=1}^\infty a_n \sin \frac{n\pi x}{L_x} e^{-\frac{n\pi y}{L_x}}
\]
Compare with te remaining boundary condition
\[
\begin{aligned}
&T(x,0) = f(x) = \sum_{n=1}^\infty a_n \sin \frac{n\pi x}{L_x}\\
\implies &a_n = \frac{2}{L_x} \int_0^{L_x} f(x) \sin \frac{n\pi x}{L_x} \dd x = \frac{2}{L_x} \langle f(x), \sin \frac{n\pi x}{L_x} \rangle
\end{aligned}
\]
For constant function $f(x) = C$,
\[
a_n = \frac{4C}{n\pi} \text{ for odd $m$, 0 otherwise}
\]
\newpage
\subsubsection*{Case 2}
\begin{wrapfigure}{r}{0.14\textwidth}
\centering
\includegraphics[width=0.14\textwidth]{img5-2}
\end{wrapfigure}
This also requires $x$-direction to be sinusoidal, and $y$-direction to be exponential.
\[
\begin{aligned}
&T(x,y) = \sum_{n=1}^\infty a_n T_n(x,y) = \sum_{n=1}^\infty a_n \sin K_n x \sinh [K_n(L_y-y)]\\
&\text{with } a_n = \frac{2}{L_x \sinh (K_n L_y)} \int_0^{L_x} f(x) \sin K_n x \dd x
\end{aligned}
\]
\subsubsection*{Linearity of the Solution}
If $T_1(x,y)$ and $T_2(x,y)$ are solutions to the Laplace equation, then $T(x,y) = aT_1(x,y) + bT_2(x,y)$ is also a solution.
\subsubsection*{Uniqueness Theorem}
Because of the orthogonality of the eigenfunctions $\sin(K_n x)$, if two functions $T_1$ and $T_2$ both satisfies the Laplace equation and the boundary condition,
then the difference of these two functions raise $a_n \equiv 0 \implies T_1 = T_2$. Thus, the solution to the Laplace equation is unique.
\subsubsection*{Case 3}
\begin{wrapfigure}{r}{0.14\textwidth}
\centering
\includegraphics[width=0.14\textwidth]{img5-3}
\end{wrapfigure}
$\bar{0}$ refers to the boundary condition of $\partial_x T = 0$
\[
\begin{cases}
X(x) = A \sin Kx + B \cos Kx \text{ with $X'(x) = 0$ at boundaries } \implies K_n = \frac{n\pi}{L_x}\\
Y(y) = C e^{Ky} + D e^{-Ky} \text{ with finite value at $y\to\infty$ } \implies Y_n = e^{-K_n y}
\end{cases}
\]
For $K=0$, $T(x,y) = A_0 + A_1 x + A_2 y + A_3 xy$ with boundary consitions $\implies A_1 = A_2 = A_3 = 0$
\[
\implies T(x,y) = A_0 + \sum_{n=1}^\infty B_n e^{-K_n y} \cos(K_n x)
\]
Applying Fourier Transformation,
\[
T(x,y) = \frac{L_x}{2} - \frac{4L_x}{\pi^2} \sum_{n=0}^\infty \frac{1}{(2n+1)^2} e^{-K_{2n+1}y} \cos(K_{2n+1}x)
\]
\begin{formal}{Blue}{blueshade}
\textbf{Usefal Integrals:}
\[
\begin{aligned}
&\int_0^{L_x} x\cos(K_n x) \dd x = -\frac{2}{K_n^2} = -\frac{2L_x^2}{n^2\pi^2}\\
&\int_0^{L_x} x\sin(K_n x) \dd x = \frac{(-1)^{n+1} L_x^2}{n\pi}
\end{aligned}
\]
\end{formal}
\begin{comment}
\begin{center}
\begin{tikzpicture}
\draw[rotate=40](0,0)ellipse(2 and 1.2);
\path[red] (-1, -1) edge [bend left] (1.2,0.6);
\node at(1.2,0.6)[right]{\scriptsize\( \lambda \)};
\fill(-0.2,0.07)circle(1pt)node[below]{\scriptsize\( p \)};
\draw[-latex,thick](-0.2,0.07)--(0.7,0.8)node[left,xshift=-0.1cm]{\scriptsize\( X \)};
\node at(0,-1)[right]{\scriptsize\( M \)};
\end{tikzpicture}
\end{center}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{img}
\end{figure}
\begin{wrapfigure}{r}{0.14\textwidth}
\centering
\includegraphics[width=0.14\textwidth]{img}
\end{wrapfigure}
\end{comment}
\newpage
\end{document}
\begin{comment}
\section*{Homework 1}
\begin{Problem}
Use the comparison test to prove the convergence of the following series:
\noindent (a) $\sum_{n=1}^\infty \frac{1}{2^n+3^n}$
\noindent (b) $\sum_{n=1}^\infty \frac{1}{n 2^n}$
\end{Problem}
\textbf{Solution.}
(a) By considering the n-th term, we have
$$
\frac{1}{2^n+3^n} < \frac{1}{2^n+2^n} = \frac{1}{2^{n+1}}
$$
Since the series is positive and that
$$
\sum_{n=1}^\infty \frac{1}{2^{n+1}} = \frac{1}{2} < \infty,
$$
the original series converges.
(b) Consider the n-th term, we have
$$
\frac{1}{n 2^n} < \frac{1}{2^n}
$$
for $n \geq 2$.
Since the series is positive and that
$$
\sum_{n=1}^\infty \frac{1}{n 2^n} < \frac{1}{2} + \sum_{n=2}^\infty \frac{1}{2^n} = 1 < \infty,
$$
the original sequence converges.
\newpage
\begin{Problem}
Test the following series for convergence using the comparison test:
\noindent (a) $\sum_{n=1}^\infty \frac{1}{\sqrt{n}}$
\noindent (b) $\sum_{n=2}^\infty \frac{1}{\ln{n}}$
\end{Problem}
\textbf{Solution.}
(a) Consider the n-th term, we have
$$
\frac{1}{\sqrt{n}} > \frac{1}{n}
$$
for $n \geq 2$.
Since
$$
\sum_{n=1}^\infty \frac{1}{\sqrt{n}} > 1 + \sum_{n=2}^\infty \frac{1}{n} \to \infty,
$$
the series diverges by the comparison test.
(b) Since $\ln n < n$ for $\forall n \in \NN$,
$$
\sum_{n=2}^\infty \frac{1}{\ln{n}} > \sum_{n=2}^\infty \frac{1}{n} \to \infty
$$
Thus, the series diverges by the comparison test.
\newpage
\begin{Problem}
Use the integral test to find whether the following series converge or diverge:
\noindent (a) $\sum_{n=2}^\infty \frac{1}{n\ln{n}}$
\noindent (b) $\sum_{n=1}^\infty \frac{e^n}{e^{2n}+9}$
\end{Problem}
\textbf{Solution.}
(a) Consider the integral
$$
\int_2^\infty \frac{1}{x \ln x} \dd x = \int_{\ln 2}^\infty \frac{\dd \ln x}{\ln x} = \ln \ln x \big|_2^\infty \to \infty
$$
Thus, the original series diverges.
(b) Consider the integral
$$
\int_2^\infty \frac{e^x}{e^{2x}+9} \dd x = \int_2^\infty \frac{1}{e^x+\frac{9}{e^x}} \dd x \geq \int_2^\infty \frac{1}{2e^x} = -\frac{1}{2} e^{-x} \big|_2^\infty = \frac{e^{-2}}{2} < \infty
$$
Thus, the original series converges.
\newpage
\begin{Problem}
Use the ratio test to find whether the following series converge or diverge:
$\sum_{n=0}^\infty \frac{(n!)^3 e^{3n}}{(3n)!}$
\end{Problem}
\textbf{Solution.}
The n-th term is given by
$$
a_n = \frac{(n!)^3 e^{3n}}{(3n)!}
$$
Thus,
$$
\frac{a_{n+1}}{a_n} = \frac{[(n+1)!]^3 e^{3(n+1)}}{[3(n+1)]!} \frac{(3n)!}{(n!)^3 e^{3n}} = \frac{(n+1)^3 \cdot e^3}{(3n+1)(3n+2)(3n+3)} = e^3 \cdot \frac{n^3+3n^2+3n+1}{27n^3+54n^2+33n+6}
$$
$$
\lim_{n\to \infty} \frac{a_{n+1}}{a_n} = \lim_{n\to \infty} e^3 \cdot \frac{n^3+3n^2+3n+1}{27n^3+54n^2+33n+6} = \lim_{n\to \infty} e^3 \cdot \frac{1+\frac{3}{n}+\frac{3}{n^2}+\frac{1}{n^3}}{27+\frac{54}{n}+\frac{33}{n^2}+\frac{6}{n^3}} = \frac{e^3}{27} < 1
$$
Thus, the series converges by the ratio test.
\newpage
\begin{Problem}
Use the special comparison test to find whether the following series converge or diverge:
\noindent (a) $\sum_{n=9}^\infty \frac{(2n+1)(3n-5)}{\sqrt{n^2-73}}$
\noindent (b) $\sum_{n=3}^\infty \frac{(n-\ln{n})^2}{5n^4-3n^2+1}$
\noindent (c) $\sum_{n=1}^\infty \frac{\sqrt{n^3+5n-1}}{n^2-\sin n^3}$